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ABSTRACT

Liu, Junfeng M.S., Purdue University, May 2018. Machine Learning Methods for
Better Drug Prioritization. Major Professor: Xia Ning.

Effective prioritization is critical in drug discovery and precision medicine. Various
computational tools have been developed and utilized in different applications for the
development and the use of drugs.

In the early stages of drug discovery, compound prioritization is largely used in
high throughput screening to help identify drug candidates for further investigation.
For a compound to be a successful drug, it has to exhibit certain promising biological
properties (e.g., compound activity, selectivities, toxicity, etc.). Compound prior-
itization methods prioritize the drug candidates based on such properties so that
the compounds that exhibit more drug-like properties could be prioritized over those
compounds that are less likely to become drugs.

After drugs are developed, drug prioritization is also essential to develop better
treatment plans in precision medicine. One of the primary goals of precision medicine
is to select the right drugs for the right patients. For instance, when selecting drugs
for patients of different cancer types, sensitive drugs for patients of certain types of
cancers should be prioritized over insensitive drugs, even if these insensitive drugs
might be sensitive to patients of other cancer types.

Current development of computational methods for compound prioritization and
drug prioritization suffer from three major issues, and we have developed novel ma-
chine learning methods to tackle each of them, respectively.

First, existing methods for compound prioritization are largely focused on devis-
ing advanced ranking algorithms that better learn the ordering among compounds.

However, such methodologies are fundamentally limited by the scarcity of available
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data, particularly when the screenings are conducted at a relatively small scale over
known promising compounds. To tackle this problem, we explore the structures of
bioassay space and leverage such structures to improve ranking performance of an ex-
isting strong ranking algorithm. This is done by identifying assistance bioassays and
assistance compounds intelligently and leveraging such assistance within the existing
ranking algorithm. By leveraging the assistance bioassays and compounds, the data
scarcity can be properly overcome. Along this line, we developed a machine learning
framework MACPAU, which consists of a suite of assistance bioassay selection methods
and assistance compound selection methods. Our experiments demonstrate an overall
8.34% improvement on the ranking performance over the current state-of-the-art.

Second, current computational methods for compound prioritization usually focus
on ranking compounds based on one property, typically activity, with respect to a
single target. However, compound selectivity is also a key property which should be
deliberated simultaneously so as to minimize the likelihood of undesired side effects of
future drugs. To solve this problem, we present a novel machine-learning based differ-
ential compound prioritization method dCPPP. This dCPPP method learns compound
prioritization models that rank active compounds well, and meanwhile, preferably
rank selective compounds higher via a bi-directional selectivity push strategy. The
bi-directional push is enhanced by push powers that are determined by ranking differ-
ence of selective compounds over multiple bioassays. Our experiments demonstrate
that the new method dCPPP achieves significant improvement on prioritizing selective
compounds over baseline models.

Third, conventional methods for drug selection are unable to effectively prioritize
sensitive drugs over insensitive drugs, and are unable to differentiate the orderings
among sensitive drugs. We have formulated the cancer drug selection problem as to
accurately predict 1). the ranking positions of sensitive drugs and 2). the ranking
orders among sensitive drugs in cancer cell lines based on their responses to cancer
drugs. We have developed a new learning-to-rank method, denoted as pLETORg,

that predicts drug ranking structures in each cell line using drug latent vectors and
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cell line latent vectors. The pLETORg method learns such latent vectors through
explicitly enforcing that, in the drug ranking list of each cell line, the sensitive drugs
are pushed above insensitive drugs, and meanwhile the ranking orders among sensitive
drugs are correct. Genomics information on cell lines is leveraged in learning the
latent vectors. Our experimental results on a benchmark cell line-drug response
dataset demonstrate that the new pLETORg significantly outperforms the state-of-the-

art method in prioritizing new sensitive drugs.
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1. INTRODUCTION

1.1 Background

Effective prioritization plays critical roles in drug discovery and precision medicine.
Drug discovery is a time-consuming and costly process. For a drug candidate to be-
come an approved drug, it has to pass several stages, including initial screening,
preclinical research, clinical trials, FDA review and post-market drug safety morn-
itoring *. Such process could take at least 10 to 15 years and $500 million to $2
billion to introduce a new drug to market [1]. In precision medicine, the drug se-
lection process also involves substantial wet-lab experiments on various drugs before
a sensitive drug is selected for a specific patient. Compared to traditional in vivo
and in vitro methods, in silico prioritization methods are considered as efficient and
economical alternatives to perform compound and drug prioritization tasks. These
in silico methods could be used in various applications. One research area on these
in silico methods is focused on the high throughput screening (HTS) in the early
stages of drug discovery. In HTS, the number of compounds to be tested is large
and thus it is expensive to conduct wet-lab experiments over all the compounds. The
in silico methods could be adopted to identify potential drug candidates effectively
and economically. Another area of interest within in silico methods is selecting sen-
sitive drugs for patients in precision medicine. In drug selection, various drugs will
be tested on a specific cell line for a specific patient. The in silico drug prioritization
methods are able to to accelerate drug selection process, so that the right drugs could
be selected to the right patients in clinical trials or in real treatments.

In silico compound prioritization, which learns computational models to rank

compounds in terms of their drug-like/disease-specific properties (e.g., efficacy, speci-

*https://www.fda.gov/ForPatients/Approvals/Drugs/default.htm
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ficity), has been attracting increasing attention, due to the emerging focus on precision
medicine [2|. In silico compound prioritization has been attracting increasing atten-
tion, due to the emerging focus on precision medicine [2|. The in silico compound pri-
oritization methods learn computational models to rank compounds in terms of their
drug-like/disease-specific properties (e.g., efficacy, specificity), so that the promising
drug candidates could be identified via prioritization. In many applications of preci-
sion medicine (e.g., cancer drug selection [3|), before precise measurements of disease-
specific compound properties need to be considered, a set of promising compounds
(typically drugs) should be first selected for future investigation. The foundation of
these in silico methods is laid down by the pioneering work of Hansch et al. [4; 5],
which revealed the existence of the mathematical relations between the biological
activity of a chemical compound and its physicochemical properties.

In silico drug prioritization for precision medicine, which learns computational
models to rank drugs for specific patients, is also gaining attention in research in
recent years. The primary goal of precision medicine is selecting the right drugs for the
right patients, so that the patients could receive customized and effective treatments.
When a disease could be treated by different drugs (e.g., many cancer drugs are
able to kill various cancer cells), it is necessary to consider which drug is the best
for the disease, or even for a specific patient. One emerging application is precision
cancer drug selection for a specific patient or a specific cell line. The landscape of
cancer genomics and recent pan-cancer evidence from theories and practices (e.g.,
the Molecular Analysis for Therapy Choice Trial at National Cancer Institutef, The
Cancer Genome Atlas?, etc.) have laid the foundation for joint analysis of multiple
cancer cell lines and their drug responses to prioritize and select sensitive cancer

drugs.

Thttps: / /www.cancer.gov/about-cancer /treatment /clinical-trials /nci-supported /nci-match
thttps://cancergenome.nih.gov/
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1.2 Existing Problems and Solutions
1.2.1 Compound Prioritization

A first step in drug discovery is to conduct bioassays [6] that screen a large set of
promising compounds. The outcomes from these bioassays inform the following drug
discovery steps [1|. Successfully identifying the promising drug candidates in early
stages is critical in drug discovery. If the right drug candidates are not successfully
selected for further investigation, or those drug candidates that are not promising
to be successful drugs are selected, the substantial efforts that are invested in the
following investigations will be wasted.

Knowledge discovery from bioassay data is critical to learn the compound physico-
chemical properties towards certain targets or diseases. Substantial research effort in
this area is dedicated to establishing the relationship between the structures of chemi-
cal compounds and their bio-chemical properties expressed in the bioassays, for exam-
ple, Structure-Activity Relationship (SAR) [4] and Structure-Selectivity Relationship
(SSR) [7]. Traditional research in in silico studies for drug discovery is currently
facing several problems. Conventional in silico studies for drug discovery have been
dominated by classification and regression methods. Classification methods assign
each candidate compound a label, typically “active” or “inactive”, to determine which
compounds are selected for further investigation. Regression methods approximate
certain measurements of drug-like/disease-specific properties for each candidate com-
pound (e.g., efficacy, specificity), and further indicate which compounds should be se-
lected for further investigation. Popular classification and regression methods include
Support Vector Machines (SVM) [9], Partial Least-Squares [10], random forests [11],
Bayesian matrix factorization [12], and Naive Bayesian classifiers [13], etc. In many
regression-based SAR models, the objective is typically to minimize the overall errors
between the predicted ICs values (a metric used to measure compound activities in
inhibiting their targets or other biological entities [14]) and true ICjy values. How-

ever, the regression models can be easily biased by the values of majority under
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the minimal-error objective. Compared to regression, classification-based SAR mod-
els suffer more from mis-ordering because majority of classification approaches only
learn from and predict class labels. Their predicted quantitative measurements are
not intended for ranking purposes. Compared to regression and classification, rank-
ing models represent a more natural way to prioritize the drug candidates based on
certain biological properties.

Another problem that is challenging the in silico studies on compound priori-
tization is the availability and quality of the data. Existing research on in silico
compound prioritization methods is mainly focused on devising advanced ranking
algorithms that better learn the ordering among compounds [15].

However, such methodologies are fundamentally limited by the scarcity of available
data, particularly when the screenings are conducted at a relatively small scale over
known promising compounds.

To address the aforementioned problems in compound prioritization, we develop
the Multi-Assay-Based Compound Prioritization via Assistance Utilization method [§]
(denoted as MACPAU). In MACPAU, we focus on improving the compound ranking
performance based on a single property (i.e., compound activity to a specific target).
Instead of devising more advanced ranking algorithm, we take the complementary
aspect, that is, using an existing strong ranking algorithm, we improve its performance
by delicately incorporating more useful information in model training. Specific, we
address the questions of whether we can leverage the structures of the chemical space
and the bioassay space, and collectively build and improve individual ranking models.
We develop a unified system in which improved compound prioritization models are
achieved through three decoupled steps: 1). select a set of additional bioassays which
are very likely to exhibit useful information for a better ranking model for the target
of interest; 2). select a set of compounds from these bioassays that are very likely to
help improve the ranking model quality; and 3). incorporate such compounds together

with the known compounds for the target of interest and build a ranking model. Our
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experiments show that the MACPAU method is able to improve the compound ranking

performance by 8.34% over the state-of-the-art method.

1.2.2 Compound Prioritization Based on Multiple Properties

Current compound prioritization typically focuses on one single compound prop-
erty [16], for example, biological activity. Biological activity of a compound can be
initially tested in a target-specific bioassay [6] by measuring whether the compound
binds with high affinity to the protein target that it is aimed to effect. Activity is
a critical property that a compound needs to exhibit in order to act efficaciously as
a successful drug. Compound prioritization in terms of activity needs to rank most
active compounds on top of less active compounds.

Compound selectivity is another key property that successful drugs need to ex-
hibit [17]. Selectivity measures how a compound can differentially bind to only the
target of interest with high affinity (i.e., high activity) while binding to other pro-
teins with low affinities. Therefore, the compound selectivity prioritization needs
to consider the prioritization difference of a compound in the activity prioritization
structures of multiple targets. Specifically, the compound selectivity prioritization
needs to follow a combinatorial ranking criterion that 1). it ranks all the compounds
well based on their activities; and meanwhile, 2). it ranks strongly selective com-
pounds preferably higher, probably even higher than more active compounds that
are not selective. These criteria correspond to that in real applications, active and
highly selective compounds are preferred over highly active but also highly promis-
cuous compounds [18] to minimize the likelihood of undesirable side effects.

Existing computational methods in bioassays analysis, particularly in finding SAR
and SSR, have been dominated by regression and classification as well. In these meth-
ods, compounds are typically represented by certain chemical fingerprints, for exam-

ple, Extended Connectivity Fingerprints (ECFP)® and Maccs keys ¥. Compound ac-

$Scitegic Inc, http://www.scitegic.com.
Y Accelrys, http://accelrys.com
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tivity and selectivity are used as a label /numerical target of the compounds. Popular
classification and regression methods include Support Vector Machines (SVM) [9],
Partial Least-Squares [10], random forests [11|, Bayesian matrix factorization [12],
and Nalve Bayesian classifiers [13], etc. These classification and regression methods
also suffer from the similar problems as identified in Section 1.2.1. Ranking methods,
compared to classification and regression, are less developed for bioassay analysis.
Additionally, to the best of our knowledge, there is no existing method that is able to
tackle both compound activity prioritization and selectivity prioritization problems
at the same time.

We develop the Differential Compound Prioritization via Bi-Directional Selectiv-
ity Push with Power method [19; 20] (denoted as dCPPP) to tackle both compound
activity ranking and selectivity prioritization problems within one differential model.
In specific, the dCPPP method consists of three components:

1. A compound scoring function, which produces a score for each compound in a
bioassay that will be used to rank the compound in the bioassay. The scoring

function uses bioassay-specific compound features to calculate the scores.

2. An activity ranking model, which learns the compound scoring function and
approximates the ranking structure among all compounds in a bioassay. The
learning is via minimizing the pairwise ordering errors introduced by the scoring

function.

3. A bi-directional selectivity push strategy, which preferably pushes up selective
compounds in the activity ranking model of a bioassay, and pushes down the com-
pounds in the model that are selective in a different bioassay. The bi-directional
push strategy leverages the ranking difference of selective compounds across mul-
tiple bioassays and alters the activity ranking by pushing selectivity-related com-
pounds in two directions with specific powers.

These three components will be learned simultaneously within one optimization for-

mulation. To the best of our knowledge, this is the first work in which the activity
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and selectivity are both tackled within one differential prioritization model that in-
tegrates multiple bioassays simultaneously. Our experiments demonstrate that the
dCPPP method is able to improve the compound selectivity ranking by 47.00% over
the baseline method while maintaining good ranking structures among both selective

and active compounds.

1.2.3 Precision Drug Selection

While in silico methods for bioassay analysis and compound prioritization help
identify promising drug candidates, the primary goal of precision medicine is to select
the right drugs to the right patients and treat the diseases effectively. Here, we
consider the problem of selecting specific cancer drugs for specific patients.

An appealing option for precision cancer drug selection is via the pan-cancer
scheme [21] that examines various cancer types together. The landscape of can-
cer genomics reveals that various cancer types share driving mutagenesis mechanisms
and corresponding molecular signaling pathways in several core cellular processes [22].
This finding has motivated the most recent clinical trials (e.g., the Molecular Analysis
for Therapy Choice Trial at National Cancer Institutel) to identify common targets
for patients of various cancer types and to prescribe same drug therapy to such pa-
tients. The pan-cancer scheme is also well supported by the strong pan-cancer muta-
tions [23| and copy number variation [24] patterns observed from The Cancer Genome
Atlas*™ project. The above pan-cancer evidence from theories and practices lays the
foundation for joint analysis of multiple cancer cell lines and their drug responses to
prioritize and select sensitive cancer drugs.

Another appealing option for precision cancer drug selection is via the popular off-
label drug use [25] (i.e., the use of drugs for unapproved therapeutic indications [26]).
This is due to the fact that some aggressive cancer types have very limited existing

therapeutic options, while conventional drug development for those cancers, and also

Ihttps: / /www.cancer.gov/about-cancer /treatment /clinical-trials /nci-supported /nci-match
**https://cancergenome.nih.gov/
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in general, has been extremely time-consuming, costly and risky [27|. However, a key
challenge for off-label drug use is the lack of knowledge base of preclinical and clinical
evidence, hence, the guidance for drug selection in practice [28].

Current computational efforts for precision cancer drug selection [29] are primarily
focused on using regression methods (e.g., random forests [30|, kernel based meth-
ods [31], ridge regression [32], deep neural networks [33]) to predict numerical drug
sensitivity values (e.g., in Glxg 1 1Cs ijt), and selecting drugs with optimal sensitivi-
ties in each cell line [34]. The existing regression methods for drug selection, however,
also suffer from the problems as mentioned in Section 1.2.1. That is, the regression
models tend to fit insensitive drugs better than sensitive drugs when the majority of
the drugs are insensitive in a cell line. This situation is even more likely when the cell
line response values for sensitive drugs follow very different distributions than those
of insensitive drugs, and thus appear like outliers. The challenge is that this situation
occurs very frequently in read datasets.

To address the problems in precision drug selection, we develop the Drug Selection
via Joint Push and Learning to Rank method [35] (denoted as pLETORg). In pLETORg,
our goal is to improve the ranking performance of cancer drugs in cancer cell lines for
drug selection. To induce correct ordering of drugs in each cell line in terms of drug
sensitivity, for each involved drug and cell line, we learn a latent vector and score
drugs in each cell line using drug latent vectors and the corresponding cell line latent
vector. The ranking positions of the drugs in a cell line are determined by the scores
generated from drug latent vectors and cell line latent vector. We learn such latent
vectors through explicitly enforcing and optimizing that, in the drug ranking list of
each cell line, the sensitive drugs are pushed above insensitive drugs, and meanwhile
the ranking orders among sensitive drugs are correct. We simultaneously learn from all
the cell lines and their drug ranking structures. In this way, the structural information
of all the cell lines can be transferred across and leveraged during the learning process.

We also use genomics information on cell lines to regularize the latent vectors in

fThttps://dtp.cancer.gov/databases_tools/docs/compare/compare methodology.htm
Hhttps: //www.ncbi.nlm.nih.gov/books /NBK91994/
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learning to rank. Our experimental results show that the pLETORg method is able to
improve the ranking performance of sensitive drugs by at least 5.81% with statistical

significance over the baseline method.

1.3 Organization

In this thesis, three novel machine learning methods are developed to tackle
the problems in compound prioritization, compound prioritization based on multiple
properties and drug prioritization. Comprehensive experiments and result analysis
are also presented respectively. The rest of this thesis is organized as follows. Chap-
ter 2 presents the problems in compound prioritization and the corresponding solu-
tion, Multi-Assay-Based Compound Prioritization via Assistance Utilization method
(MACPAU), along with the experimental results and analysis. Chapter 3 presents the
problems in compound prioritization based on multiple properties and the correspond-
ing solution, Differential Compound Prioritization via Bi-Directional Selectivity Push
with Power method (dCPPP), along with the experimental results and analysis. Chap-
ter 4 presents the problems in drug prioritization and the corresponding solution,
Drug Selection via Joint Push and Learning to Rank method (pLETORg), along with
the experimental results and analysis. Chapter 5 summarizes the three solutions and

experimental results.
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2. MULTI-ASSAY-BASED COMPOUND PRIORITIZATION
VIA ASSISTANCE UTILIZATION

2.1 Introduction

Drug discovery is a time-consuming and costly process. It is estimated to take
at least 10 to 15 years and approximately $500 million to $2 billion to bring a new
drug to market [1]. To accelerate this process, in silico methods have been exten-
sively developed and adapted as alternatives to in vivo and n vitro methods. These
in stlico methods are particularly used for identifying potential drug candidates dur-
ing the early stages of drug discovery, when the number of compounds to be tested
is large and thus it is expensive to conduct wet-lab experiments over all the com-
pounds. The foundation of these in silico methods is laid down by the pioneering
work of Hansch et al. [2; 3], which revealed the existence of the mathematical relations
between the biological activity of a chemical compound and its physicochemical prop-
erties. Since then, significant research efforts have been dedicated to the development
of quantitative methods for modeling Structure-Activity Relationship (SAR) mathe-
matically and predicting compound activities from compound 2D /3D structures and
other properties, etc [4; 5|. Such SAR models have demonstrated a great success in
assisting and accelerating drug discovery [6]. Recent advancement on SAR modeling
is further enabled by more powerful techniques developed from machine learning and
data mining communities [7]. In addition, the scalability of SAR modeling has also

been substantially improved so that much larger regions of the chemical space can

Reprinted (adapted) with permission from J. Liu and X. Ning, “Multi-assay-based compound
prioritization via assistance utilization: a machine learning framework,” Journal of Chemical In-
formation and Modeling, vol. 57, no. 3, pp. 484-498, 2017. Copyright 2017 American Chemical
Society.
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be effectively explored to identify drug-like compounds, owing to the development in
Big Data analytics [§].

On the other hand, compound prioritization, a qualitative counterpart of quantita-
tive SAR modeling, was less emphasized historically but has been recently attracting
attention increasingly, due to the emergence of precision medicine [9]. In many ap-
plications of precision medicine, before the quantitative measurements of compound
activities need to be considered, a set of promising compounds (particularly drugs)
should be first selected for any future investigation. The problem herein naturally
boils down to compound ranking/prioritization, in which only the ordering of com-
pounds matters. Conventional SAR methods cannot be directly adapted to solve the
compound prioritization problem, largely due to the fact that many SAR modeling
approaches have their optimization objectives that do not directly translate to the
objectives for prioritization. For example, in many regression-based SAR models, the
objective is typically to minimize the overall errors between the predicted 1C5y values
(a metric used to measure compound activities in inhibiting their targets or other
biological entities [10]) and true IC5y values. However, since the IC5 values for active
compounds can have a wide spread and orders of magnitude difference (e.g., from
InM to 1uM), the regression models can be easily biased by the values of majority
under the minimal-error objective. Thus, the predicted 1Cs5q values from such regres-
sion models may lose the structural relations in terms of their value ordering. Very
complicated regression models can be applied to deal with the order difference among
IC5o values, but they tend to be overfitted, particularly when the value distribution is
highly screwed. Compared to regression, classification-based SAR models suffer from
mis-ordering even worse because majority of classification approaches only learns from
class labels and predicts class labels. Their predicted quantitative measurements are
not intended for ranking purposes.

In this manuscript, we present our systematic studies on compound prioritiza-
tion and our new machine learning approaches to conduct and improve compound

prioritization. Current development on computational approaches for compound pri-
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oritization is mainly focused on devising advanced ranking algorithms that better
learn the ordering among compounds [11]. However, such methodologies are funda-
mentally limited by the scarcity of available data, particularly when the screenings
are conducted at a relatively small scale over known promising compounds. In this
work, we take a complementary perspective, that is, using an existing strong rank-
ing algorithm, we improve its performance by delicately incorporating more useful
information in model training. In specific, we address the questions whether we can
leverage the structures of the chemical space and the bioassay space, and collectively
build and improve individual ranking models. We propose a unified system in which
improved compound prioritization models are achieved through three decoupled steps:
1). select a set of additional bioassays which are very likely to exhibit useful informa-
tion for a better ranking model for the target of interest; 2). select a set of compounds
from these bioassays that are very likely to help improve the ranking model quality;
and 3). incorporate such compounds together with the known compounds for the
target of interest and build a ranking model.

We have developed different approaches for selecting additional assistance bioas-
says and assistance compounds. The bioassay selection methods are developed based
on the intuition that if two bioassays have similar compounds and similar orders
among the compounds, then they are likely to provide useful information to each
other. Therefore, a critical component of the proposed system is to measure bioassay
similarities that capture the most pertinent signals for potential model improvement.
We have developed a suite of assistance bioassay selection methods that measure
bioassay similarities based on their involved compounds and their orders. Similarly,
we have developed a set of assistance compound selection methods based on com-
pound similarities and their positions in compound ranking. Our experiments over a
large collection of bioassays demonstrate an overall 8.34% improvement on the rank-
ing performance over the state of the art. We also provide guided solutions as to
which selection methods to use based on bioassay properties. Note that compound

ranking does not require that the involved bioassays have to be of same type or follow
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a same protocol. Therefore, the proposed framework has a much larger use scenario
and is able to connect heterogeneous bioassays (i.e., target-specific and cell-based).
The rest of the article is organized as follows. Section 2.2 presents the literature
review on related work. Section 2.3 presents the overview on the new developed meth-
ods for better compound prioritization. Section 2.4 presents the assistance bioassay
selection methods. Section 2.5 presents the assistance compound selection methods.
Section 2.6 presents the assistance compound incorporation approaches. Section 2.7
provides the fundamental computational tools. Section 2.8 presents the experimental

results. Section 2.9 presents the conclusions and discussions.

2.2 Related Work
2.2.1 In Silico Methods for Bioassay Data Analysis

A bioassay is a type of scientific experiment used to determine the biological activ-
ities of compounds [12]. The results from bioassays inform and direct the entire drug
discovery process [1]. Significant amount of research efforts in knowledge discovery
from bioassay data is on finding the the relations between the chemical structures of
compounds and their bio-chemical properties expressed in the bioassays [13|. For ex-
ample, Structure-Activity Relationship (SAR) [2; 3], the relation between compound
bioactivity (i.e., the capability of binding to targets with high affinities) and their
physicochemical structures, is among the most interested relations from binding bioas-
says. Another interested relation is Structure-Selectivity Relationship (SSR) [14] that
measures the relation between compound selectivity (i.e., the capability of binding to
its target with much higher affinity than to other proteins) and their physicochemical

structures.
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Classification and Regression Methods

(Classification and regression have dominated the computational methods to ana-
lyze bioassay data, particularly in finding SAR and SSR. These methods typically rep-
resent each compound in the bioassays by certain fingerprints that capture compound
characteristics and properties, and then build a classification or regression model over
the compounds using their fingerprints. Popular features include Extended Connec-
tivity Fingerprints (ECFP)*, Maccs keys', and Frequent Sub-structures [15]. These
computational methods include Support Vector Machines (SVM) [16; 17], Support
Vector Regressions (SVR) [18], Neural Networks [19], Partial Least-Squares [20; 21],
Kernel Partial Least-Squares [22|, random forests 23|, Bayesian matrix factoriza-
tion [24], and Naive Bayesian classifiers [25].

These classification and regression approaches typically use both active and inac-
tive compounds which together provide differentiable signals. However, in compound
prioritization applications, typically only active compounds are available and their
correct ranking orders are interested. This results in fewer, and in principle more
similar, training data for compound prioritization, and thus the ranking problem

becomes more difficult.

Model Improving Schemes

Various computational schemes have also been developed to improve computa-
tional methods for bioassay data analysis. Such schemes include semi-supervised
learning [26; 27|, in which additional useful (un-labeled) compounds from different
bioassays are incorporated to improve model performance; multi-task learning [27; 28;
29; 30|, in which multiple related models for multiple bioassays are learned together
to improve model performance and generalizability; classifier ensembles [27; 31; 32|,

in which multiple models are combined to produce more robust and accurate results;

*Scitegic Inc, http://www.scitegic.com.
TMDL Information Systems Inc, http://www.mdl.com.
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and active learning [33|, in which additional compounds are actively selected and used
to train a better model.

In terms of SAR modeling schemes, a special class of methods is based on multi-
assay “affinity fingerprint” [34; 35; 36; 37; 38; 39|. In Villar’s pioneering Target-Related
Affinity Profiling (TRAP) method [34; 35; 36|, the affinity profiles of compounds
against a set of diverse bioassays are used as the fingerprints of the compounds. Such
affinity fingerprints represent signals of assessible features and shapes of the com-
pounds across bioassays, and they can be used to prioritize compounds for a target
of interest. In Bender’s method [37], instead of real affinity values, Bayes scores pro-
duced from empirical Bayesian SAR models over a set of targets are used as the Bayes
affinity fingerprints for compounds. Such fingerprints are used for database search
and thus compound prioritization. Similarly, Lessel et. al. [38] use the docking scores
of compounds against a set of reference binding sides as the compound fingerprints.
Martin’s profile-QSAR method [39] use empirical Bayesian SAR’s to first predict and
profile activities of compounds against a set of targets within a same protein family.
Such profiles are further used in a regression for direct activity prediction for a new
target. All these methods combine activity information from other assays within the
assay of interest to improve virtual screening.

The reason why many of these schemes are able to improve computational ap-
proaches in SAR and SSR is largely due to the well established chemogenomics princi-
ples [40; 41; 42|, which demonstrate that proteins belonging to a same protein family
tend to bind to similar compounds. Therefore, by collectively learning models for
proteins from a same protein family and having the signals from those proteins trans-
ferred across, the model performance for each involved protein could be improved.
However, in the case of compound ranking, the chemogenomics principles may not
necessarily be an optimal scheme. Actually, it may hinder the ranking performance
improvement. For example, if two proteins of a same family have similar active com-
pounds of very different orders, the model from one protein may substantially confuse

that of the other one. Thus, new schemes beyond chemogenomics are desired to work
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for compound ranking. In this manuscript, we develop such schemes from a purely
data-driven perspective. In addition, the existing methods do not easily scale to a
large and heterogeneous set of targets (e.g., a large set of protein targets from dif-
ferent protein families), but require normalization among the involved targets and
their SAR models (e.g., the predicted affinity scores need to be calibrated in order to
be comparable in affinity fingerprints). In this manuscript, the schemes that we will

develop will be easily scalable and do not require normalization across targets.

2.2.2 Learning to Rank

Learning to rank (LETOR) [43; 44] is a research area in Computer Science, where
the focus is on developing ranking models via learning. It has drawn tremendous in-
terest in the past decade particularly in Information Retrieval (IR). Existing LETOR
methods fall into three categories: 1). pointwise methods [45], 2). pairwise meth-
ods [46] and 3) listwise methods [47|. Listwise methods model the full combinatorial
structures of ranking lists, while pairwise methods model pairwise ranking relations
and pointwise methods model individual scores that are used later for sorting (similar
to regression).

The idea of using LETOR approaches to prioritize compounds has also drawn
some attention [48]. For example, Agarwal et al. [11] developed the idea of bipartite
ranking [49] to rank chemical structures such that active compounds and inactive
compounds are well separated in the ranking lists. Thus, inactive compounds are
used in the ranking algorithm, which could provide substantial information to push
active compounds toward the top of the ranking lists. However, in many applications,
inactive compounds are not trustworthy due to, for example, the lack of elaborate
evaluation and validation. In addition, the ordering among inactive compounds is
less interested. Pointwise methods include those of Jorissen et al. [50] and Geppert
et al. [51]. They use SVMs to rank compounds in a bioassay to detect active com-

pounds and perform similarity search, respectively. However, these methods do not
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optimize compound ranking structures. They utilize the scores produced from SVMs
for ranking, which are originally intended for classification. The above methods are
all applied on bioassays that are relatively large, which can be distant from real ap-
plications. Meanwhile, they all focus on ranking within one bioassay and thus lack

the capability of exploring beyond the particular bioassay.
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Table 2.1.: Notations

(a) Bioassays and Compounds

notations meanings

c compound

B bioassay

G the set of compounds in B;

RM; ranking model learned from C; (also denoted as bSimy)

Bg the j-th assistance bioassay for B;

Cij the set of compounds in Bg

B the set of assistance bioassays for B; (i.e., Bf = Ung)

(s the set of assistance compounds for B; (C;7 C UjCij)

RM;r ranking model learned from C; U C;r

T ground-truth ranking list for C;

3 predicted ranking list of B; using RM;

Tiosj predicted ranking list of B; using RM;

(b) Bioassay Similarity (c) Aggregated Compound Similarity
notations meanings notations meanings
bSimy cross-ranking based bioassay sim-  ¢Sim™*  the maximum compound sim-
ilarity ilarity

bSim¢*  bSim, using CI cSim™?®  the minimum compound simi-
bSim3'  bSim, using ranking alignment larity
bSim, profiling based bioassay similarity = cSim®'8 the average compound simi-
bSim;:L bSim, using ranking alignment larity

bSims®  bSimp, using compound similarity — c¢SimP®  the ranking position dis-
counted compound similarity

(d) Scoring Schemes for Ranking Alignment

notations meanings

alinS.ign compound identity based scoring
alinS.sin compound similarity based scoring
alinS*P°® scoring with ranking position discounted

(e) Other Notations

notations meanings

CI concordance index

Tanimoto Tanimoto compound similarity

Cp =r Cq  Cpis ranked higher than ¢, in ranking list
r
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2.3 Method Overview

Inspired by our previous work on multi-assay based SAR modeling [27], we decom-
pose the problem of improving compound ranking for a bioassay B; into the following
three sub-problems:

e Which bioassays can be used to improve B;’s ranking model RM;;

e Which compounds from such bioassays can be utilized to improve RM;; and

e How such compounds can be incorporated to improve RM;.

Here the bioassay B;, whose ranking model RM; is to be improved, is denoted as
the target bioassay. The other bioassays that are selected to help improve the tar-
get bioassay’s ranking model are thus denoted as the assistance bioassays, and the
compounds from such assistance bioassays that are incorporated for better RM; are
denoted as the assistance compounds. In addition, the improved RM; is denoted as
RM;", Thus, the ranking model improvement procedure is decomposed into three steps
in sequence: 1). assistance bioassay selection, 2). assistance compound selection, and
3). assistance compound incorporation. The overview of the framework is presented

in Figure 2.1. Such a decomposition is expected to significantly reduce the complexity

assistance bioas- assistance com-

say selection pound selection
. al . i . . i in-
bSim2h, bSimg*, cSim™*, cSimmin, compound in

bSim3', bSim® cSim'€, cSimPos corporation

target ; assistance ; assistance ; new training
bioassay B; bioassays B;“ compounds Ci+ data C; U Ci+

original new model RM;r
model RM;

Fig. 2.1.: Framework Overview

of the problem, and meanwhile enable necessary interpretability along the course. In
the rest of this section, we discuss our approaches for each of the steps. Table 2.1 lists

all the notations that are used in this manuscript. In Section 2.4, Section 2.5 and
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Section 2.6, we discuss assistance bioassay selection, assistance compound selection
and assistance compound incorporation, respectively. In Section 2.7, we discuss the

computational tools that are used in the system.

2.4 Assistance Bioassay Selection

The ideal assistance bioassays for the target bioassay B; are expected to provide
auxiliary information, carried out by consequential assistance compounds, with which
B;’s ranking model RM; can be improved. A key question here is what such auxiliary
information could be in the context of ranking. In active learning for classification,
auxiliary information could be additional strong positive/negative signals that help
bias the classification boundary toward the right direction. In the context of regres-
sion, auxiliary information could be additional data samples that help better reveal
the underlying data distribution. Unfortunately, such options from classification and
regression do not directly apply for ranking as ranking focuses on the ordinal relations
across multiple instances. Thus, we expect that auxiliary information from assistance
bioassays could be the information that helps strengthen, remedy or reconstruct the
desired reference/ordinal structures among the compounds in the target bioassay.
Furthermore, assistance bioassays should be the ones that sufficiently exhibit such
information.

In order to identify sensible assistance bioassays, we need quantitative measure-
ments to evaluate how much auxiliary information each candidate bioassay carries.
However, it is non-trivial to quantify such information content and volume. Instead,
we surrogate them by the similarity between the target bioassay and a candidate as-
sistance bioassay in terms of their ordinal structures, under the hypothesis that if two
bioassays are significantly similar in their ordinal structures, one of them carries aux-
iliary information for the other. In specific, we develop the similarities by comparing

the ordinal structures from the following two aspects:
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e How the target bioassay B;’s model RM; performs on the candidate assistance bioas-
say. This method represents an indirect comparison of the ordinal structures; and

e How the target bioassay and the candidate assistance bioassay are similar in their
compounds and compound rankings. This is a direct comparison of the ordinal
structures.

These two similarities lead to the following two assistance bioassay selection schemes:

cross-ranking based assistance bioassay selection, and profiling based assistance bioas-

say selection, respectively. From all the candidate bioassays, we select the assistance

+

10

bioassays into a set denoted as B;", where all the assistance bioassays have the re-

spective bioassay similarities that fall in 98 percentile of all the bioassay similarities.

2.4.1 Cross-Ranking based Bioassay Similarities

The first bioassay similarity measurement is inspired by our previous work that has
been applied for target fishing [52]. The idea is, for the target bioassay B, if its ranking
model RM; performs well on another bioassay Bj, then B; and B; are similar in terms
of their ranking structures. The underlying assumption is that model RM; captures
and models the signals from B;’s compound ranking, and the good performance of
RM; on B; indicates that such signals align well with those from B;’s ranking. Under
this assumption, the problem further boils down to measuring the performance of
RM; on B;. Such cross-ranking based assistance bioassay selection scheme is denoted
as bSim,.

To measure the performance of RM; on Bj, we devise the follow two approaches:

ci

o, relies on a standard ranking evaluation

1). the first approach, denoted as bSim
metric; and 2). the second approach, denoted as bSim?!, utilizes sequence-alignment
based ranking comparison. Note that in bSim, we only use RM; on B; in order to select
assistance bioassays to improve RM;. We don’t use RM; on B; for RM; improvement

purposes because in addition to RM;, it requires the availability of B;’s model RM;,

and thus depends on the quality of RM;.
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Concordance Indexing for bSim, (bSim¢!)

We first use concordance index (CI; will be discussed later in Section 2.7.2) to
evaluate the ranking performance of RM; on B;. In this case, RM; ranks B; into a
ranking list 75, and CI is then calculated on 7i_,; with respect to Bj’s true ranking
list ;. The higher the CI is, the better the ranking model RM; can predict the
ranking relations in Bj, and thus the more similar B; and B; are. Please note that
the similarities calculated from bSimé* are not necessarily symmetric because the CI
calculated from 7;_,; (i.e., ranking that RM; produces for B;) and r; is not necessarily
the same as the CI calculated from 7j_,; (i.e., ranking that RM; produces for B;) and

’f’j.

Ranking Alignment for bSim, (bSim2')

The concordance index CI measures the entirety of the ranking structures. How-
ever, it is possible that only a certain portion of the ranking structures in B; will
help, while CI cannot indicate such scenarios. Thus, we develop an alignment based
ranking performance measurement bSim®* (details on ranking list alignment will be
discussed later in Section 2.7.3). The key idea of bSim2! is to identify locally con-
served ranking structures among 7i_,; and ;. If the alignment reveals strong block
structures between 75_,; and rj, it indicates that RM; is able to reproduce a certain

chunk of orderings in 7;, which would be considered for auxiliary information.

2.4.2 Profiling based Bioassay Similarity

The second bioassay similarity measurement is based on the comparison of com-
pound profiles of two bioassays without modeling any of them. If two bioassays have
similar rankings over similar compounds, we consider them as similar and hypothesize
that they carry useful information that can be utilized to assist each other. Under this

hypothesis, the problem can be casted to that, for bioassay B; and Bj;, we compare
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the two ranking lists 7; and r;. We develop the following two approaches for ranking

al

list comparison: 1). the first approach, denoted as bSimg,

compares two ranking
lists 7; and r; using alignment; and 2). the second approach, denoted as bSim:®, com-
pares two sets of compounds C; and C; regardless of ranking structures. The approach

bSimg® is for approach comparison purposes and to make the study complete.

Ranking Alignment for bSim, (bSim3")

The key idea in profiling-based ranking alignment approach bSim;l is very similar
to that of bSim2!, that is, to measure how similar two rankings are. In specific, we

look at to what extent similar compounds are ranked in similar orders. However, in

al
X 7

bSim?', instead of aligning 7i,; and rj as in bSim

o we align 7; and r; and use the

alignment to measure the similarity between B; and B;.

Compound Similarities for bSim;, (bSimg*)

In bSim:®, we compare B; and Bj by looking at how similar their compounds are,
and thus, the similarity between B; and B; is calculated as the average compound sim-
ilarities (Compound similarity will be discussed later in Section 2.7.1). This approach

ignores the ranking ordering among the compounds.

2.5 Assistance Compound Selection

From the identified assistance bioassays, we need to select assistance compounds
that will best help improve the target bioassay B,’s ranking model. We develop vari-
ous compound similarities to score compounds for selection purposes. We select the
assistance compounds into a set denoted as C;” which have the respective compound
similarities that fall in 90 percentile of all compound similarities. The selected as-
sistance compounds will be further incorporated with B,’s original compounds C; to

train a better ranking model RM;" for B;.
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2.5.1 Aggregated Compound Similarities

In order to select assistance compounds from By’s assistance bioassays B, we
first union all the compounds from the assistance bioassays into U;C). We score each
compound ¢ in U,C} \ ¢ using the maximum /minimum /average of all the similarities
between ¢ and all the compounds in C; (pairwise compound similarity will be discussed
later in Section 2.7.1). The scoring functions are available in Equation S6, S7 and
S8 in the supporting information. These compound scoring functions are denoted as

cSim™*, cSim™" and cSim®*'E, respectively.

2.5.2 Discounted Compound Similarities

The above cSim™*, cSim™® and cSim®'® compound scoring measurements do not
consider the ranking structures of B; or B;". In order to identify assistance compounds
that could be most useful with respect to the ranking structures of B;, we score
each compound c¢ in UjC;i \ C; using its weighted sum of compound similarities with
compounds in C;, where the weights are defined as a function of the reciprocal of C;’s
ranking positions. The scoring function is available in Equation S9 in the supporting

information. This compound scoring function is denoted as cSimP°s.

2.6 Assistance Compound Incorporation

In order to incorporate the selected assistance compounds in C;" to improve RM;,
a key question is where to incorporate the new compounds from C;" into r; for fur-
ther training. We develop the following interpolation scheme to do the assistance
compound incorporation. We first use RM; (i.e., Bi’s baseline model without new

compounds incorporated) to test C; U C;" (i.e., B;’s own compounds C; and the new

+

i

assistance compounds C;"). In this way, RM; will generate rankings, denoted as 7
for C; UC", and thus distribute C;"’s compounds among C;. For each compound in

C+

i

we use its surrounding compounds in 7" that belong to C; and their true scores
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in r; (i.e., not the predicted values in 7;") to interpolate linearly a score for the new

compound. Figure 2.2 demonstrates the linear interpolation.

Gu C’;r true scores in r; U
interpolated scores for C;r

9.00
750 = 6.0+1x 2060
6.00
5.50
433 = 2.0+2x2220

317 = 2.04+1x 25220

2.00
@ compounds in G

el
+

© compounds in C;"

Fig. 2.2.: Linear Interpolation

Note that it is possible that when RM; is not strong enough, a new compound
in C;" can be ranked in between a nonconcordant pair of compounds from C;. Even
though, since the interpolation uses the true scores from r;, not the predicted scores
from 7;f, the interpolated score will still reflect the most possible ordering among
the pair of compounds and the new compound (i.e., the new compound is ranked in

between the old compounds).

2.7 Computational Tools

In this section, we discuss the computational building blocks and concepts that

will be used in the three sub-problems.
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2.7.1 Compound Similarities

In our methods, each compound is represented by their PubChem compound
substructure fingerprints*. The fingerprints are composed of 881 substructure-keys,
each corresponding to a predefined substructure. If a substructure is present in a
compound, the corresponding dimension in the fingerprint of that compound is set to
1, otherwise 0. The similarity between two compounds c¢; and cy will be computed as
the Tanimoto coefficient [53| of their fingerprints f; and fs. The Tanimoto coefficient

is calculated as follows,

> firfor
Tanimoto(cy, Cy) = — h=l — (2.1)
o fuefie + D forfor — D f1efor
k=1 k=1 k=1

where k goes over all the n (n = 881) dimensions of the fingerprints, and fi/fox
is the value at the k-th dimension of f;/fs. Compound similarities calculated as in

Equation 2.1 will be used for compound ranking as in Section 2.8.3, etc.

2.7.2 Concordance Index

Given a true ranking list r and a predicted ranking list 7, concordance index
(CI) |54] calculates the ratio of correctly ranked pairs (i.e., concordant pairs) in 7 as

follows,

CI(r,7) = ! > (e, ey, (2.2)

[{cps Cqlep =1 ¢y} {CpCalCp1Ca}

where ¢, > ¢, represents a pair of compounds ¢, and ¢, such that c, is ranked higher

than ¢, in 7, and [ is the indicator function,

1, if z is true
I(z) = (2.3)
0, otherwise

tftp: //ftp.ncbi.nlm.nih.gov /pubchem /specifications /pubchem _fingerprints.pdf
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A higher CI(r,7) value indicates better 7 (i.e., more concordant pairs are predicted

correctly).

2.7.3 Ranking List Alignment

To align two ranking lists r; and r;, we adopt the popular Smith-Watermann dy-
namic programming algorithm [55] with scoring function variations from two aspects:
1). compound-identity based scoring and 2). compound-similarity based scoring. In
addition, we incorporate a ranking position-specific discount into the scoring func-
tions. The ranking list alignment starts from the top-ranked compounds. The ranking

alignment algorithm is available in Algorithm S1 in the supporting information.

Compound Identity-based Scoring (alinS.i4,)

In conventional pairwise sequence alignment, the notation of “match” or “mis-
match” between two symbols is defined when the two symbols are same or different.
When there is a “match” or “mismatch”, fixed scores are used to measure its contribu-
tion to the alignment. In aligning ranking lists of compounds using the conventional
pairwise sequence alignment algorithm, the “match” and “mismatch” correspond to
same and different compounds that are aligned, respectively. The scoring algorithm
is available in Equation S4 (line 3 of Algorithm S2) in the supporting information.

We denote this compound identity-based scoring scheme as alinS.i4y.

Compound Similarity-based Scoring (alinScsiy)

We further relax alinS.;4, t0 allow “match” and “mismatch” between different and
same symbols (i.e., compounds), respectively, and in this case the score is calculated as
the similarity between the symbols (compounds). Thus, if two compounds are similar,
the algorithm will promote the alignment between them, and ultimately encourage

the alignment between similar subsequences of similar compounds (i.e., the locally
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conserved ranking structures). The scoring algorithm is available in Equation S5
(line 6 of Algorithm S2) in the supporting information. We denote this compound

similarity-based scoring scheme as alinS.giy.

Ranking Position-Specific Discount (alinS™°®)

When the top rankings are more concerned, the ranking alignment should focus
more on the top portion of the ranking lists. To differentiate rankings at different
positions of the ranking lists, we incorporate ranking positions in the scoring scheme.
That is, when we score each alignment, we include a ranking position-specific discount
in addition to the alignment score. The ranking position-specific discount increases as
the ranking positions decrease, that is, larger discounts are applied for lower ranked
compounds. The discount function is available in Equation S1 (line 21 of Algo-
rithm S2) in the supporting information. We denote this ranking position-specific
discount as alinS™°%. If alinS™°% is applied together with alinS 4, and alinS.gip,

the scoring methods are denoted as alinS; g, and alinS. .., respectively.

cidn csim»

2.8 Experiments
2.8.1 Data Preparation

We select a set of bioassays from PubChem BioAssay [56] according to the follow-
ing protocol:
1. Identify all the in vitro and confirmatory bioassays that are biochemical binding
bioassays and that test chemical compounds over only one specific single target;
2. From all the above identified bioassays, find all the bioassays that include at least
one FDA-approved drug;
3. From all such drug-included bioassays, select all the bioassays that use ICsy [10/

as the activity measurement (i.e., inhibition bioassays);
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4. From all such inhibition bioassays, select a set of bioassays that have 20 - 200
active compounds, where the activity is defined by respective bioassay depositors
based on ICsq thresholds; and

5. From the selected bioassays as above, only use the active compounds and discard
the inactive compounds.

The reason we choose bioassays that have known drugs tested is for applying our

prospective ranking improvement methods in future research as will be discussed in

Section 2.9, where ranking drugs will be the focus. We use inhibition bioassays in order

to have a relatively homogeneous type of bioassays and ground-truth scores. However,

our methods are not restricted to only homogeneous bioassay types. The reason we
further choose bioassays with a certain number of active compounds is to avoid trivial
cases when there are sufficient compounds to train a strong baseline ranking model,
or when there are way too few compounds that limit any ranking algorithms. We only
use active compounds because it is closer to the real scenario when active compounds

(drugs) need to be prioritized, while including inactive compounds may bias the

ranking algorithm to produce good ranking results on inactive compounds that are

not interested.

It is possible that in one bioassay, there are multiple different compounds with
same [Csq values and thus should be ranked same. In this case, we randomly select
one of such compounds and remove the rest from the dataset. This is just to reduce
ties in the rankings and thus unnecessary obstacles for the ranking algorithm as the
purpose is to demonstrate the effectiveness of ranking improvement schemes, not
the ranking algorithms themselves. Out of the above protocol, we end up with 665
bioassays and 11,310 unique compounds involved in these bioassays. On average, each
bioassay has 30.6 compounds, and each compound is involved in 1.80 bioassays. The
statistics over these bioassays is presented in Table 2.2. Figure 2.3 shows the number
of compounds in each of the 665 bioassays. The average number of compounds in the
bioassays is 30.6. The protein targets and encoding genes for these bioassays are listed

in Table S1 in the supporting information. Given the small number of compounds
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Fig. 2.3.: Bioassay Size

in each bioassay and the high compound similarities, the compound prioritization

problem is expected as sufficiently difficult.

Table 2.2.: Dataset Description

#bioassays #compounds avg #cmps avg #bsys avg comp sim

665 11,310 30.6 1.80 0.7854

The column “#bioassays” has the number of bioassays in the dataset. The column

“4compounds” has the total number of unique compounds in the dataset. The
column “avg #cmps” has the average number of compounds in each bioassay. The
column “avg #bsys” has the average number of bioassays that each compound is
involved in. The column “avg comp sim” has the average compound similarity in
each of the bioassays.

2.8.2 Evaluation Metrics

We use the popular concordance index (CI) as discussed in Section 2.7.2 to evaluate
the ranking performance. We did not use Normalized Discounted Cumulative Gain
(NDCGQG) [57], which is another popular ranking metric. We found in our experiments,
the gains are not well defined, and a careless assignment of gain values will lead to

strong bias in the evaluation, or insensitive NDCG values to the model improvement.
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We did not use precision@k or accuracy@k either, because all the compounds involved

are all positive compounds and thus precision is not defined.

2.8.3 Ranking Algorithm

We use the ranking algorithm SVMrank [58] and its implementation * as the basic
ranking algorithm. The key idea of SVMrank is to decompose a ranking list into
a set of instance pairs, and assign a positive label to each concordant pair and a
negative label to each nonconcordant pair. Then the ranking problem is converted
to a standard classification problem which is solved by Support Vector Machines
(SVM). Previous research [48] demonstrates that SVMrank is a strong algorithm
for compound ranking tasks. There exist other ranking algorithms [11] which show
superior performance on certain large datasets. We compared such algorithms with
SVMrank in training baseline ranking models and observed that SVMrank has even
better performance (average CI 0.679) than these algorithms on our datasets (e.g.,
the algorithm in [11] has average CI 0.514). This could be due to the fact that the
bioassays used in the experiments are small and contain only active and very similar
compounds compared to the benchmark SAR datasets used in other work [11; 48],
which are typically large and have dissimilar compounds. Given this observation,
we use SVMrank as the ranking algorithm in our experiments. We use Tanimoto
coefficient as defined in Equation 2.1 in Section 2.7.1 as the kernel in SVMrank.
It is demonstrated that Tanimoto coefficient is a valid kernel (i.e., positive semi-

definite) [53].

2.8.4 Experimental Protocol

We apply 5-fold cross validation [59] in evaluating ranking performance. Each
bioassay is randomly split into 5 folds of compounds for 5 runs of experiments. In

each run, 4 folds are used for training and the rest fold is used for testing. The perfor-

Shttps://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
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mance is the averaged result from the 5 experiments. All the involved parameters are
optimized via grid search. In each experiment, all the bioassay similarities are calcu-
lated using the compounds from training data only. That is, we ensure that all the
testing data is not observed during training. Note that through the above 5-fold cross
validation protocol, parameters for each model on a bioassay (e.g., the baseline SVM
models) are selected via grid search, and therefore, the 5-fold cross validation protocol
enables model selection for each model type on each bioassay. In addition, the cross
validation protocol also enables model selection from multiple different models (i.e.,
assistance bioassay selection methods and assistance compound selection methods)
so as to decide for each bioassay which improvement model is optimal. This is done
by using the 4-fold training data in each run for bioassay similarity calculation with
other bioassays (all their 5-fold data), and thus the corresponding assistance bioas-
say selection. Similarly, the compound similarities are calculated using the 4-fold
training data and the compounds from the selected bioassays. For each bioassay, we
tested all the combinations of assistance bioassay selection and assistance compound
selection methods. The combination that produces the best average improvement on
the baseline models over the 5 folds will be identified as the optimal improvement

method.

2.8.5 Experimental Results
Baseline Model Performance

We train the standard (i.e., no assistance compounds incorporated) SVMrank
models for each bioassay as the baseline. These baseline models are trained using
their respective optimal parameters (e.g., ¢ in SVMrank), which are identified through
grid search and cross validation. The baseline model performance is presented in
Figure 2.4. The average CI for the 665 bioassays is 0.679, with a standard deviation
0.108. Out of the 665 bioassays, 34 bioassays have baseline CI below 0.5 (i.e., the

baseline model performance is even worse than random).
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Fig. 2.4.: Baseline Model Performance

Figure 2.5 shows the relation between the average compound similarity within
a bioassay and the baseline model performance, and Figure 2.6 shows the relation
between the bioassay size (i.e., number of compounds in a bioassay) and baseline

model performance. These 34 bioassays, which have baseline CI below 0.5, have rel-
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compound pairwise similarity

baseline CI

Fig. 2.5.: Bioassay Compound Similarity vs Baseline Model Performance

atively large compound similarities and small bioassay size. Both of the two factors
contribute to the significant difficulties of the ranking problems, because the baseline
models have to differentiate and rank similar compounds from only very limited in-
formation. Overall, however, Figure 2.5 does not show a strong negative correlation
between compound similarity within a bioassay and baseline performance as typi-
cally observed in many classification problems. Similarly, Figure 2.6 does not show

a strong positive correlation between bioassay size and baseline performance. These
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Fig. 2.6.: Bioassay Size vs Baseline Model Performance

two observations indicate that the involved ranking problems could be highly non-
trivial and heterogeneous, and therefore different bioassays may require very different

approaches to improve their ranking performance.

Overall Best Performance Comparison

In this section, we show the best performance over all the bioassays. That is, for
each bioassay, we look at its best improved model and the corresponding assistance
bioassay and assistance compound selection methods. We will evaluate individual
assistance bioassay selection and assistance compound selection methods later in Sec-

tion 2.8.5 and Section 2.8.5, respectively.

Best Performance Analysis Table 2.3 shows the overall performance of the new
methods on the top-10 bioassays whose baseline model performance is above 0.5 and
on which the ranking performance is improved most significantly (i.e., the methods
are the ones that introduce the most significant improvement for the bioassays. The
10 bioassays are the ones which have the most significant improvement in all the
bioassays). The complete overall performance results are available in Table S3 in the
supporting information. Out of the 665 bioassays (including the 34 bioassays whose
baseline model performance is below 0.5), the new developed methods are able to

improve the ranking performance for 607 bioassays (i.e., 91% of all the bioassays)
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Bi |G| RM; RM{ imprv (%) bSim  alinS |B{| cSim IC|
261405 16 0.533 0.800 50.00 bSim® - 9 cSim*'& 43
149865 22 0.533 0.747 40.00 bSimct - 6 cSim™* 29
264807 18 0.600 0.833 38.89 DbSimg® - 3 cSim®*'& 24
274062 22 0.653 0.867 32.65 bSim*' alinSlg 7 cSim™* 42
241231 21 0.633 0.840 32.63 bSimd' alinSii, 5 cSim™* 28
626142 26 0.513 0.680 32.47 bSimd' alinS.gin 7 cSim™® 18
389657 26 0.587 0.773 31.82 bSim*' alinSlg 8 cSim™* 35
260896 22 0.553 0.700 26.51 bSim¢l - 4 cSim™* 32
319592 20 0.633 0.800 26.32 bSim¥' alinSF5s 6 cSimP*s 44
255080 20 0.633 0.800 26.31 bSimd' alinS;y, 3 cSim™* 30

The column corresponding to “B;” has the bioassay AIDs from PubChem. The column corre-
sponding to “|C;|” has the bioassay size. The column corresponding to “RM;” shows the baseline
model performance. The column corresponding to “RM;r ” has the best improved model perfor-
mance. The column corresponding to “imprv (%)” has the improvement of the best model (i.e.,
RM;L) over the baseline model (i.e., RM;) in percentage. The columns corresponding to “bSim”
and “cSim”, respectively, show the assistance bioassay selection method and the assistance com-

pound selection method that result in the best improvement.

The column corresponding to

“alinS” has the ranking list alignment scoring schemes used in c¢Sim, if applicable. The columns
corresponding to “|B;"|” and “|C;"|", respectively, show the number of assistance bioassays and the

number of assistance compounds incorporated in the improved model.

with 9.24% best improvement on average. For all the 665 bioassays, the average

best improvement is 8.34%. Each bioassay needs 5.23 assistance bioassays and 25.41

assistance compounds on average in the new methods of best improvement. Compared

to the average size of the bioassays (i.e., 30.6), the best methods require about same

number of compounds to achieve significant improvement. We conducted a paired

t-test on the baseline model performance and the best model performance for those

607 bioassays. The test shows a p-value 1.08 x 107!3%, demonstrating the significance

of the performance improvement.
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For the rest 58 bioassays whose baseline models are not really improved, we ob-
served that these bioassays have an average intrinsic compound similarity as 0.8155,
while the average intrinsic compound similarity of those 607 improved bioassays is
0.7824. This indicates that a possible reason for no improvement over the 58 bioassays
is the high homogeneity of their compounds and thus more difficulties in ranking.

For those 34 bioassays whose baseline model CI is below 0.5, 25 bioassays have
their improved CI above 0.5. For those 25 improved bioassays, we conducted a t-test
over random model performance (i.e., 0.5) and the best improvement from the new
developed method. This t-test shows a p-value 2.5 x 1073, demonstrating the signif-
icant difference of the improved performance from random performance. Excluding
these 34 bioassays, out of the 631 bioassays whose baseline model CI is above 0.5, the
new developed methods are able to improve the ranking performance for 573 bioas-
says (i.e., 91% of all the bioassays) with 8.04% best improvement on average. For all
the 631 bioassays, the average best improvement is 7.20%.

Figure 2.7 shows the relation of baseline model performance and performance im-
provement (in percentage). Table 2.4 presents the performance improvement with
respect to different baseline model performance. Both Figure 2.7 and Table 2.4
demonstrate that the new methods are particularly effective in improving ranking

performance when the baseline ranking performance is poor.
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Fig. 2.7.: Baseline Model Performance vs Best Improvement
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Table 2.4.: Best Performance Improvement

baseline [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6)
best imprv (%)  68.75 28.39 26.73 12.57)
baseline 0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9, 1.0]

best imprv (%)  8.55 4.75 3.83 0.35

The rows corresponding to “baseline” present the baseline model per-
formance (characterized into intervals). The rows corresponding to
“best imprv (%)” present the corresponding average improvement of
the best model over the baseline model in percentage.

Figure 2.8 presents the number of bioassays that can be improved by certain com-
binations of assistance bioassay selection and assistance compound selection methods.
Figure 2.9 presents the average percentage of improvement from such combinations.
In terms of the number of improved bioassays, the top-5 best performing combina-

tions of assistance bioassay selection and assistance compound selection methods are:
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Fig. 2.8.: Number of Improved Bioassays by Different Methods

1. bSim2!(alinScsin) + cSim™* (296 improved bioassays)

2. bSim®(alinSher) + cSimP°® (286 improved bioassays)

csim
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3. bSim?'(alinS.siy) + cSimP® (286 improved bioassays)

4. bSim?(alinS.g5,) + cSim®'8 (285 improved bioassays)

5. bSim?'(alinShgy) + cSim™* (284 improved bioassays)

Among the top-5 best performing selection combinations in terms of the number
of improved bioassays, three of them use bSim2!(alinS.si,). Therefore, in general,
bSim?'(alinS.si,) is one of the best performing bioassay selection methods when
the number of improved bioassays is concerned. Similarly, alinS s, is the best
performing compound scoring scheme for alignment, and cSim™** and cSim®'8 are the
best performing assistance compound selection methods.

In terms of the average improvement, the top-5 best performing combinations of

assistance bioassay selection and assistance compound selection methods are:

bSim3~(alinScsin

a rpos
bSim; (alinS_;,

6.5

al

1

bS 1mf;1 alinScign
bS 1mf’{1
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1

1
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)
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Fig. 2.9.: Percentage (%) of Improvement by Different Methods

bSim?'(alinStsy) + cSim®"e

csim

6.77% average improvement

bSim?!(alinSher) + cSimPs

oom 6.67% average improvement

csim

bSim*(alinS g, ) + cSim™® (6.61% average improvement

AR B o S

( ) ( )
( )+ ( )
bSim?!(alinStsy) + cSim™* (6.62% average improvement)
( ) ( )
( ) ( )

bSimg 2l(alinS gin) + cSim™* (6.55% average improvement
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Among the top-5 best performing selection methods in terms of percentage im-

rpos

rpos>
csim

provement, three of them use bSim®'(alinS.L;,). Thus, in general, bSim®*(alinS; s,

is one of the best performing assistance bioassay selection methods when the percent-

rpos
csim

age improvement is concerned. Similarly, alinS is the best performing compound

* is the best performing assistance compound selection

scoring scheme, and cSim™
method.
Overall, bSim® (alinS:tiy) is one of the best performing assistance bioassay se-

lection methods when both the number of improved bioassays and the percentage

max

improvement are concerned, and cSim™* is one of the best performing assistance
compound selection methods. This indicates that bioassay similarities calculated
from cross-ranking based list alignment with compound similarity-based scoring with
positional discount schemes are effective in capturing signals from bioassays that can
be leveraged for model improvement.

Another commonly used protocol for model selection is through a validation set.
However, given the fact that the bioassays used in our experiments are small in general
(the average number of compounds per bioassay is 30.6 as indicated in Table 2.2), if a
significant portion of the bioassays is held out for validation and testing, there will be
insufficient training compounds to train good models. However, to further validate
the performance of the new methods under this validation-set based model selection
protocol, we conducted corresponding experiments on a set of 41 bioassays out of
the 665 bioassays which have more than 60 compounds. Each of the 41 bioassays is
randomly split into 5 folds of compounds for 5 runs of experiments. In each run, 3
folds are used for training, 1 fold for validation and 1 fold for testing. The experiments
show 3.27% average improvement from the best improvement models over the baseline
models, compared to 2.19% average improvement from the cross validation setting.
This demonstrates that the new models do have the capability of improving baseline
model performance. This also consolidates our conclusion that the scarcity of data
would result in lower performance, and that with our protocol, the low performance

could be largely improved.
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Fig. 2.10.: Assistance Relations among Bioassays

Bioassay Assistance Relations Figure 2.10 presents the assistance relations among
a set of bioassays. The full relations are available in Figure S1 in the supporting infor-
mation. The details on the assistance relation generation are provided in Section S6 in
the supporting information. In Figure 2.10, each node represents a bioassay (the num-
bers on nodes are the bioassay AIDs from PubChem). A directed edge from a node v,
to another node v; represents that bioassay B; is selected as an assistance bioassay for
bioassay B;, and the width of the edge represents the number of assistance compounds

selected from Bj. The selection methods are color-coded along the edges. Figure 2.10
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shows there are some bioassays which are selected as assistance bioassays more fre-
quently than others. For example, bioassay 625217 serves as an assistance bioassay
for several other bioassays including bioassay 685045, 694143 and 750737. Bioassay
625217 has 120 active compounds and it is one of the largest bioassays in the dataset.
However, this bioassay is identified as an assistance bioassay via different methods for
the different bioassays. This indicates that different bioassay selection methods are
able to identify different signals from bioassays. There are some interesting relations
in Figure 2.10. For example, bioassays 625151, 625153 and 625154 are all assistance
bioassays for bioassay 270514 but they are not assistance bioassays for each other.
Bioassay 625151, 625153 and 625154 target muscarinic acetylcholine receptor M1, M2
and M3, respectively, and they share 53 common compounds. Bioassay 270514 tar-
gets tachykinin receptor 1. Both muscarinic acetylcholine receptors and tachykinin
receptors belong to the family of G protein-coupled receptors (GPCR) and are heavily
involved in the enteric nervous system. Relations of muscarinic acetylcholine receptors
providing useful information to help ranking compounds of tachykinin receptors may
indicate novel knowledge about the two sets of proteins. We will further investigate

such relations and similar relations presented in Figure 2.10 in our future work.

Guided Decision Rules on Choosing Bioassay Selection Methods As Fig-

ure 2.8 and Figure 2.9 indicate, different combinations of assistance bioassay selection

and assistance compound selection methods have different behavior. Therefore, we

explored principled ways to determine which methods to use based on bioassay char-
acteristics. In particular, we considered assistance bioassay selection methods as they
represent the first step in the model improvement process. Once bioassay selection

methods are determined, assistance compound selection methods can be determined
correspondingly based on the top results in Figure 2.8 and Figure 2.9.

We consider the 10 bioassay selection methods (i.e., bSim®, bSimg*, bSim?!(alinSig,),

bSim3*(alinScian), bSim'(alinS ), bSimdt (alinScein), bSim3' (alinS ig, ), bSimst(alinSeian),

bSim?!(alinS;hey ), bSim® (alinS.siy,)) as 10 classes, and the baseline model RM as an

csim
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additional bioassay selection method/class (i.e., selection of no additional bioassays;
here we use bSim, to represent the baseline method). Thus, the problem is formu-
lated as to classify each bioassay to one of the classes (i.e., assign each bioassay to one
of the methods that is most likely to enable a better model on the bioassay). This
is a typical multi-class classification problem [60] and we solve the problem using a
decision tree [61]. In addition to performing multi-class classification, decision trees
will also generate interpretable rules that can explain and direct the decision making
during the classification process.

We constructed a set of 23 features for each bioassay and assigned a class label to
each bioassay in our dataset. The class label corresponds to the best performing as-
sistance bioassay selection method for the particular bioassay, or the baseline method
if none of the selection methods shows improvement. The 23 features for a bioassay
B; include the following;:

e 1-10). Mean of the bioassay similarities between B; and the other bioassays using
the 10 different bioassay similarities, respectively;

e 11-20). Standard deviation of the bioassay similarities between B; and the other
bioassays using the 10 different bioassay similarities, respectively;

e 21). Number of compounds in B; (i.e., |G;|);

e 22). Average pairwise compound similarity in B; (i.e., m Y ece, 2eee, Tanimoto(c, ¢'),
denoted as cSimg); and

e 23). Baseline model (i.e., RM; or bSimy) performance (in CI).

These features are designed so as to capture the intrinsic properties of the bioassays

themselves and the relations across bioassays that may determine their corresponding

assistance bioassay selection methods. Details on the decision tree learning is available

in Section S3 in the supporting information.

Figure 2.11 presents the first few levels of a decision tree that is learned from
such features. The decision tree in Figure 2.11 demonstrates that the profiling-based

bioassay similarities using compound similarities (i.e., bSimgs) is the most important

factor to decide what bioassay selection methods to use. Interestingly, this is inde-
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rpos

bSimg'(alinSti;)
std <6
(95.5%)

rpos>
csim

bSim?'(aling
std <~
(3.8%)

bSim3 (alinSin)
mean < K

(76.2%)

bSimet
std <o
(19.2%)

bSimct bSim?!(alinSi4,) bSim&t bSimct bSim?'(alinSciqg)

std <7 std < A std < ¢ std < w mean < 1)

(2.3%) (1.5%) (72.9%) (3.3%) (18.0%)
optsl || opts2 opts3 || optsd opts6 opts7 |[ opts8 || opts9 || optslO || optsll
(1.5%) || (0.8%) | | (0.8%) || (0.8%) (66.3%) || (6.7%) || (0.9%) || (2.4%) || (4.1%) || (14.0%)

o =051, 8 =325, v =0.07, 7 = 0.10, A\ = 0.03, § = 0.05, K = 1.06, ¢ = 0.12,

w = 0.08, c = 0.14, vb = 0.86

optsl: bSim?'(alinScsin)

opts2: bSim?'(alinSlg;), bSim3'(alinScsin), bSime

opts3: bSim?'(alinSily;), bSiml'(alinScien), bSimd'(alinSiig)
bSim3!(alinScsin), bSimg, bSim3'(alinS;ie)

OptS4: cidn
opts5: bSime, bSimd'(alinScian), bSimS®

opts6: bSim3'(alinScien), bSimZ'(alinScsin), bSim3'(alinScsim),
bSim?'(alinStlg;), bSim3'(alinScian)
optsT: bslmgl(alinsﬁfgi), bSim'(alinSclg,), bSim3'(alinScian), bSimg'(alinScian),
Si 1(alinSCSm)
opts8: bslmgl(alinsﬁg‘i’;), bSim3'(alinScian), bSim3'(alinScign), bSim3'(alinScsin),
bSim}C{1

opts9: bSim2'(alinScein), bSim3'(alinSgis,), bSimg, bSim®, bSimZ'(alinSis,)
opts10: bSimg, bSim'(alinScig,), bSimi'(alinScian), bSimg'(alinScein),

bSim!(alinSEir)

optsll: bSim3'(alinScsin), bSim3'(alinSiig), bSim3'(alinShgy), bSimd'(alinScian),
bSim3(alinScgin)

opts12: bSime, bSim:'(alinSig,)

Note: each leaf node represents a ranking list of bioassay selection methods that are
recommended for bioassays in the leaf. The percentage number in parentheses in each
node is the percentage of bioassays which can be improved by the methods in the node.

Fig. 2.11.: Decision Tree on Method Selection
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pendent of the baseline model (RM or bSim,) performance of the target bioassays.
That is, even for bioassays whose baseline models are strong, there is still potential
to improve their models based on compound similarities with other bioassays. Please
note that in decision trees, the nodes that are closer to the root (i.e., on higher levels
in the tree) have more discriminative power.

For the bioassays which have mean of bSimg® lower than a threshold « (i.e., the
left child of bSim¢®), the bioassay size (i.e., |Gi|) is the next decision rule to determine
assistance bioassay selection methods. If the mean of bSim¢® is higher (i.e., the right
child of bSim;S), the next decision rule is the profiling-based bioassay similarity us-
ing compound ranking alignment, in which compound identity-based scoring scheme
with ranking position-based discount is used (i.e., bSim3'(alinSig,)). The split from
bSim:® to |C;| indicates that if the target bioassay is sufficiently different from other
bioassays in its compounds, a good strategy is to look at the intrinsic properties and
see if there is enough information from the target itself to enable a good model. The

) indicates that if the target bioassay is suffi-

split form bSimS® to bSim:'(alinS:ig,
ciently similar to other bioassays in its compounds, a good option is to leverage other
bioassays.

When |C;| is concerned, if the target bioassay is too small (i.e., the left child of
|Ci| < B; no sufficient information from the bioassay itself), a rational choice is still
to try to leverage other bioassays (i.e., the left child of |C;| < () delicately. It turns
out in this case, profiling-based bioassay similarity using ranking list alignment and
position-based scoring (i.e., bSim3*(alinScgs,)) is the first decision rule. If the target
bioassay is large enough (i.e., the right child of |C;| < /), the first choice is to use the

baseline model bSim, of the bioassay (i.e., the first choice of optsb)

When the target is sufficiently similar to other bioassays (i.e., right child of the

rpos

root), the standard deviation of bSim2'(alinS;i5,) is the next rule to consider. The

use of alinS2 g (i.e., compound identity-based scoring with position-based discount)

indicates the importance of identical compounds and their ranking positions in de-

termining assistance relations across bioassays. When considering the standard de-
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viation of bSim3*(alinS;iy,), the mean of bSim?'(alinSs,) can be either large or

) mean is less likely due to

cidn

small. However, the possibility of large bSim3'(alinS:ig,
the high heterogeneity of all the bioassays. Thus, small bSim3'(alinScls,) standard
deviation (i.e., the left child of bSim?'(alinSi,)) could correspond to the possibility
that all the bSim3'(alinScig,) values are small, and thus intuitively very few common
compounds and/or very different ranking positions for the common compounds. In
this case, it turns out the mean of bSim®'(alinS.i4,) is the next rule. That is, it
is to detect how the baseline model of the target bioassay can identify the possible
blocks of common compounds with similar ranking orders on the candidate assistance

bioassays.

When the standard deviation of bSim3'(alinSZig,) is large (i.e., the right child

cidn

cidn cidn

of node bSim;l(alinSrpos mpos)

), it indicates that there are some large bSim3'(alinS
means and thus large number of common compounds and high similar of their ranking
orders. In this case, it turns out bSim¢* is the next rule. This implies that the baseline
model of the target bioassay is a good indicator to select assistance bioassays when
there exist good assistance bioassay candidates.

An interesting aspect in the decision tree in Figure 2.11 is that, on the higher
levels of the decision tree, the decision rules are more from profiling-based meth-
ods, while on the lower levels of the decision tree, the decision rules are more from
cross-ranking based methods. This implies that profiling-based bioassay similarities
are more powerful in differentiating bioassays that can be improved from different
assistance bioassay selection methods, and such capability of differentiation could be
scaled to a large set of heterogeneous bioassays. Cross-ranking based methods might

be more powerful within a set of more homogeneous bioassays.

Assistance Bioassay Selection Method Comparison

Based on Figure 2.8 and Figure 2.9, we select the best assistance compound selec-

tion method cSim™* (i.e., the best performing assistance compound selection method
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in general), and analyze the performance of various assistance bioassay selection meth-
ods with this assistance compound selection method. The full set of experimental
results is available in Table S4 in the supporting information. The detailed results
are available in Table S5- S44 in the supporting information.

Table 2.5 presents the comparison of various assistance bioassay selection methods

max

when the assistance compound selection method has been fixed to cSim™**. The assis-
tance bioassay selection methods show strong performance improvement once there
is improvement, but also strong performance decline when there is no improvement.
The performance improvement (i.e., imprv(+%) in Table 2.5) is typically greater
than the performance decline (i.e., imprv(—%)). The results show that overall the
improvement (imprv(%) from various assistance bioassay selection methods in Ta-
ble 2.5) is only slightly positive (0.68% at best), and the standard deviation of the
improvement (imprv-std in Table 2.5) is large (~ 8.00%) . This phenomenon cor-
relates to the relatively high performance improvement (imprv(+%), ~ 7.00%) once
there is improvement, and also relatively strong performance decline (imprv(—%),
~ —5.00%) once no improvement is observed. It may also because that the bioassays
are heterogeneous in their ranking structures, and different bioassays have different
optimal assistance compound selection methods.

With cSim™*, in terms of overall improvement, the ten assistance bioassay se-
lection methods do not show significant difference, with bSim2'(alinS.siy,) slightly
better than the rest. In terms of the average positive improvement (i.e., imprv(+%)),
bSim2!(alinS;k;y) has better performance (6.62%) than others. This indicates that
somehow the model performance is sensitive to the assistance bioassay selection meth-
ods. One possible reason for this would be the relatively small size of training data (on
average, 30.6 compounds in each bioassay) such that once good assistant bioassays
are incorporated (i.e., significantly amount of useful information is incorporated), the
improvement is significant, but once poor ones are incorporated (i.e., significantly

amount of noisy information is incorporated), the performance drops significantly.

The reason may also relate to the relatively high inherent pairwise compound sim-
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ilarities in each bioassay (0.7854 on average). Once new compounds are included
among the similar compounds, it is possible that the relation between the compound
ranking orders and their compound structures is dramatically changed by the new

compounds, which is also attributed by the small bioassay sizes.

Assistance Compound Selection Method Comparison

Based on Figure 2.8 and Figure 2.9, we select the best assistance bioassay selec-
tion method bSim?!(alinS:iy) (i.e., the best performing assistance bioassay selection
method in general), and analyze the performance of various assistance compound
selection methods with this assistance bioassay selection method. The full set of
experimental results is available in Table S4. The detailed results are available in

Table Sh- S44.

Table 2.6 presents the comparison of assistance compound selection methods,

rpos>
csim/*

where the assistance bioassay selection method has been fixed to bSim?!(alinS
With bSim?!(alinS: i), in terms of overall improvement, the four assistance com-
pound selection methods do not show significant difference, with cSimP°® slightly bet-
ter than the rest. In terms of the average positive improvement, cSim®’¢ has better
performance (6.77% on imprv(+%)) than others. The reasons could be also similar to

those for Table 2.5, that is, the relatively small bioassay sizes, high inherent pairwise

compound similarities and high heterogeneity of bioassays.
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2.9 Discussions and Conclusions

We have developed a unified machine learning framework together with various
assistance bioassay and assistance compound selection approaches to build improved
compound ranking models. We also have presented a full spectrum of parameter
studies and performance analysis over all the proposed approaches. In addition, we
have explored principled ways to prioritize bioassay selection and compound selection
methods based on bioassay properties. Our experiments demonstrated that on aver-
age, the best improvement (with the optimal assistance bioassay selection and optimal
assistance compound selection approaches for each bioassay) is 8.34% on average for

a large set of heterogeneous bioassays.

Appropriate Applications The most direct and appropriate applications of the
multi-assay-based compound prioritization models are lead optimization, which typ-
ically involve small homologous series of only active compounds. However, the com-
putational methods in principle are not really limited to lead optimization. They
can be used to do, for example, secondary screening, when the data quality is better
than in high-throughput screening and data size is small; drug selection for cancer
cell lines, when the goal is to rank the most sensitive cancer drugs with respect to
each cell line. In addition to bioactivity and efficacy, the methods can also be used
to train ranking models that rank compounds with respect to their other properties

(e.g., toxicity).

Computational Complexity Currently, it requires in our system that all the
baseline models and pairwise bioassay similarities are calculated, which also involves
a lot of pairwise compound similarity calculation. However, the calculation can be
easily paralleled. For example, the pairwise bioassay similarities between bioassay B;
and other bioassays, and the similarities between bioassay B; and other bioassays,
can be fully decoupled and thus paralleled. Therefore, although the bioassay space is

large, the similarity calculation will not be not a bottleneck.
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Model Sensitivity We have observed that the ranking model performance is sensi-
tive to the bioassay and compound selection approaches, and there are no significant
trends among all the selection options that can consistently lead to ranking perfor-
mance improvement. The possible reasons include the relatively small bioassay sizes,
high inherent pairwise compound similarities and high bioassay heterogeneity. This
sensitivity also indicates that compound ranking is a more difficult problem than
classification, and thus more advanced and robust modeling schemes are highly de-
manded. The current framework has issues on robustness and the model performance
is sensitive to the bioassay and compound selection methods. We will further inves-
tigate these issues and explore more principled ways to guide the use of different
selection methods. Our future work would include mixtures of selection methods
for each individual target bioassays that could be automatically determined by the
bioassay properties. Another interesting direction of future work is to couple the
bioassay selection and compound selection methods, and optimally determine their

combinations in a purely data-driven fashion.

Structures of the Bioassay Space A unique innovation of the proposed meth-
ods is that it sheds lights on the relations among bioassays/biological processes that
may go beyond our current understanding. For example, if two bioassays have high
similarities in terms of their active compounds as well as the orderings among the
compounds, it indicates possibilities of drug-induced side effects or drug reposition-
ing, if there are drugs involved in the bioassays. Note that the involved two bioassays
are not necessarily of a same type, a same experimental setting or protocol. Also,
the measurements over the involved compounds are not necessarily of a same scale
or under a same unit. This is because in the problems of prioritization, only the
ordering structures matter, not the exact numerical values. This opens the door to
compare larger collections of very heterogeneous bioassays and thus to explore much

larger regions of biological space, chemical space and bioassay space, while the correct
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methods on bioassay analysis (e.g., SAR) can only analyze smaller sets of homoge-
neous bioassays.

We believe the assistance/similarity structures among bioassays deserve more at-
tention. Our future work will include further analysis on such structures for any
potential new discoveries. In particular, we will examine the structures related to
drugs (e.g., their relative positions in a bioassay, their ranking positions across mul-

tiple bioassays).

Supporting Information Availability

Detailed method description and results can be found at:

http://cs.iupui.edu/"liujunf/projects/CompRank_2016.html.
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3. DIFFERENTIAL COMPOUND PRIORITIZATION VIA
BI-DIRECTIONAL SELECTIVITY PUSH WITH POWER

3.1 Introduction

Drug discovery is time-consuming and costly: it approximately takes at least 10 to
15 years and $500 million to $2 billion to fully develop a new drug [1]. To accelerate
this process, in silico methods [2| have been extensively developed as alternatives,
particularly for identifying promising drug candidates in the early stages of drug
discovery. In silico compound prioritization, which learns computational models to
rank compounds in terms of their drug-like/disease-specific properties (e.g., efficacy,
specificity), has been recently attracting increasing attention, due to the emerging
precision medicine [3|. In many applications of precision medicine (e.g., cancer drug
selection [4]), before precise measurements of disease-specific compound properties
need to be considered, a set of promising compounds (typically drugs) should be first
selected for future investigation. In this paper, we tackle the problem of differential
compound prioritization for better ranking selective compounds for drug candidate
selection.

Current compound prioritization typically focuses on one single compound prop-
erty [5], for example, biological activity. Biological activity of a compound can be
initially tested in a target-specific bioassay* by measuring whether the compound
binds with high affinity to the protein target that it is aimed to affect. Activity is

a critical property that a compound needs to exhibit in order to act efficaciously as

Reprinted (adapted) with permission from J. Liu and X. Ning, “Differential compound prioriti-
zation via bidirectional selectivity push with power,” Journal of chemical information and modeling,
vol. 57, no. 12, pp. 29582975, 2017. Copyright 2017 American Chemical Society.

*https://en.wikipedia.org/wiki/Bioassay
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a successful drug. Compound prioritization in terms of activity needs to rank most
active compounds on top of less active compounds.

Compound selectivity is another key property that successful drugs need to ex-
hibit [6]. Selectivity measures how a compound can differentially bind to only the
target of interest with high affinity (i.e., high activity) while bind to other proteins
with low affinities. Therefore, the compound selectivity prioritization needs to con-
sider the prioritization difference of a compound in the activity prioritization struc-
tures of multiple targets. Specifically, the compound selectivity prioritization needs
to follow a combinatorial ranking criterion that 1). it ranks all the compounds well
based on their activities; and meanwhile, 2). it ranks strongly selective compounds
preferably higher, probably even higher than more active compounds that are not
selective. These criterion correspond to that in real applications, active and highly
selective compounds are preferred over highly active but also highly promiscuous
compounds |7] to minimize the likelihood of undesirable side effects.

In this paper, we present an innovative machine learning method to conduct n
silico compound prioritization that is able to achieve both the above goals, with a
particular focus on better prioritizing selective compounds. This method consists of
three components:

1. A compound scoring function, which produces a score for each compound in a
bioassay that will be used to rank the compound in the bioassay. The scoring

function uses bioassay-specific compound features to calculate the scores.

2. An activity ranking model, which learns the compound scoring function and
approximates the ranking structure among all compounds in a bioassay. The
learning is via minimizing the pairwise ordering errors introduced by the scoring

function.

3. A bi-directional selectivity push strategy, which preferably pushes up selective
compounds in the activity ranking model of a bioassay, and pushes down the com-

pounds in the model that are selective in a different bioassay. The bi-directional
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B/c represents a bioassay/a compound.

gﬁ” right next to a compound c; represents the push-up (indicated by 1) power on c; as a selective
compound in Bj. The solid arrowed lines represent that the push-up power on a selective compound
(pointed by the arrows, e.g., c; in Bg) is determined by the ranking position of the compound in
a different bioassay (pointed by the line ends, e.g., ¢5 in By). The lines are annotated with such
ranking positions (e.g., 'f‘%* on the solid arrowed line from c5 in B; to c; in Ba).

hf_ right next to a compound c; represents the push-down (indicated by |) power on c; as an
x-selective compound in By. The dashed arrowed lines represent that the push-down power on an
x-selective compound (pointed by the arrows, e.g., ¢5 in B1) is determined by the ranking position
of the compound in a different bioassay (pointed by the line ends, e.g., ¢5 in Bz2). The lines are
annotated with such ranking positions (e.g., 7"§+ on the dashed arrowed line from c5 in By to c5 in
B1).

Fig. 3.1.: Overall Scheme of dCPPP

push strategy leverages the ranking difference of selective compounds across mul-
tiple bioassays and alters the activity ranking by pushing selectivity-related com-
pounds in two directions with specific powers.
These three components will be learned simultaneously within one optimization for-
mulation. This differential C'ompound Prioritization via bi-directional selectivity
Push with Power method is denoted as dCPPP. Figure 3.1 presents the overall scheme
of dCPPP. To the best of our knowledge, this is the first work in which the activity and
selectivity are both tackled within one differential prioritization model that integrates
multiple bioassays simultaneously.
The rest of the paper is organized as follows. Section 3.2 presents the related

work to the new method. Section 3.3 presents the definitions and notations used
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in the paper. Section 3.4 presents the new method of activity-selectivity differential
ranking with bi-directional powered push. Section 3.5 presents the materials used for
experimental evaluation. Section 3.7 presents the experimental results. Section 3.8

and 3.6 present the discussions and conclusions, respectively.

3.2 Related Work
3.2.1 In Silico Methods for Drug Discovery

A first step in drug discovery is to conduct bioassays that screen a large set of
promising compounds. The outcomes from these bioassays inform the following drug
discovery steps [1]. Significant amount of research efforts in knowledge discovery from
bioassay data is on establishing the relationship between the structures of chemical
compounds and their bio-chemical properties, for example, Structure-Activity Rela-
tionship (SAR) [2] and Structure-Selectivity Relationship (SSR) [8], expressed in the
bioassays.

(Classification and regression dominate the in silico machine learning methods in
bioassay analysis, particularly in finding SAR and SSR. In these methods, com-
pounds are typically represented by certain chemical fingerprints, for example, Ex-
tended Connectivity Fingerprints (ECFP)" and Maccs keys . Compound activity
and selectivity are used as a label /numerical target of the compounds. Popular clas-
sification and regression methods include Support Vector Machines (SVM) [9], Partial
Least-Squares [10], random forests [11], Bayesian matrix factorization [12], and Naive
Bayesian classifiers [13|, etc. Ranking methods, compared to classification and re-

gression, are less developed for bioassay analysis.

fScitegic Inc, http://www.scitegic.com.
Accelrys, http://accelrys.com
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3.2.2 Structure-Activity-Relationship Modeling

A recent trend in SAR modeling is through leveraging the information from mul-
tiple bioassays. A class of methods along this line identifies multiple bioassays and
leverages information therefrom to improve SAR qualities. In Ning et al. [14], the
SAR classification methods first identify a set of targets related to the target of in-
terest, and then employ various machine learning techniques (e.g., semi-supervised
learning [15|, multi-task learning [16], and classifier ensemble [17]) to utilize activ-
ity information from these targets for a better SAR model. In Liu and Ning [18],
compound activity ranking models are developed by leveraging multiple bioassays.
In these methods, assistance bioassays and assistance compounds are identified and
incorporated to build models that can accurately prioritize active compounds in a
bioassay.

A different class of methods is via the multi-assay based “affinity fingerprints”.
In the Target-Related Affinity Profiling (TRAP) method [19], the affinity profiles
of compounds against a set of diverse bioassays are used as the fingerprints of the
compounds. In Bender et al. [20], Bayes scores produced from empirical Bayesian
SAR models over a set of targets are used as the affinity fingerprints for compounds.
Similarly, Lessel et al. [21] use the docking scores of compounds against a set of
reference binding sides as compound fingerprints. All these existing methods that
utilize multiple bioassays in SAR use them homogeneously and cannot utilize the

differential signals therein effectively.

3.2.3 Structure-Selectivity-Relationship Modeling

Existing SSR methods include multi-step classification based approaches [22], in
which compounds that are classified as active are further classified by a selectivity
classifier; multi-class classification based approaches [23|, in which compound activ-
ity and selectivity are considered as two classes in a common multi-class classifier;

compound similarity based approaches [24], in which compounds that are similar to
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known selective compounds are considered as selective; etc. A unique thread of re-
search on SSR is using multi-task learning to learn compound activity and selectivity
simultaneously [25]. The multi-task method incorporates both activity and selectiv-
ity models into one multi-task model to better differentiate compound activity and
selectivity. Unfortunately, these existing methods cannot produce activity prioritiza-
tion and selectivity prioritization simultaneously, or cannot leverage the prioritization

structures among multiple bioassays to improve SSR modeling.

3.2.4 Learning to Rank

Learning to rank (LETOR) [26] focuses on developing ranking models via learning.
It has achieved tremendous success in Information Retrieval (IR). Existing LETOR
methods fall into three categories: 1). pointwise methods [27], which learn individual
scores that are used later for sorting; 2). pairwise methods [28], which model pairwise
ranking relations; and 3). listwise methods [29], which model the full combinatorial
structures of ranking lists. A recent focus on LETOR is to improve the ranking
performance on top of the ranking lists [30; 31].

The idea of using LETOR approaches to prioritize compounds has also drawn
some attention recently. For example, Agarwal et al. [32] developed bipartite ranking
to rank chemical structures such that active compounds and inactive compounds are
well separated in the ranking lists. Jorissen et al. [33| used pointwise methods within
SVMs to rank compounds in a bioassay to detect active compounds and perform sim-
ilarity search, respectively. Liu and Ning [18] used SVMRank [34] to build compound
activity prioritization models. However, LETOR for compound selectivity prioritiza-

tion is less developed compared to its use for compound activity prioritization.

3.3 Definitions and Notations

A compound c is active in a bioassay B with protein target ¢ if the IC5q value (i.e.,

the concentration of the compound that is required for 50% inhibition of the target
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Table 3.1.: Notations

notations meanings

c/B/t compound /bioassay /target

ci“ / cf* selective /non-selective compound ¢; in By
Cy, the set of compounds in By
Sk the set of selective compounds in By, (S = {cF"})
Ay the set of non-selective compounds in By (Ax = C \ Sk)
St the set of x-selective compounds in By

(St ={c;"BBi,¢;~ € 51})
s /s sk~ score of ¢;/cfT /et in By

¥ /r¥% /r¥= percentile ranking of ¢;/cFT /¥ in By

pf ranking position of ¢; in By
Rt Hff reverse height of ¢i*/ height of c;?*
gf+ / hé‘f’_ push-up power for ci-” € S /push-down power for c;?_ €Sy

under consideration; lower ICs value indicates higher activity®) of ¢ for ¢ is less than
1 uM. A compound c is selective in a bioassay B with protein target ¢ if the following

two conditions are satisfied [25]:

1. cis active for ¢ (i.e., ICso(c,t) < 1uM); and

IC50(C, f}k)

2. n
vtp£t 1Cs0(c,t)

> 50,

that is, ¢ needs to be active for ¢, and its activity on ¢ is at least 50-fold higher than
its activity on any other targets.

In this paper, each of the bioassays that are used for model training has only one
single protein target. Thus, activity/selectivity with respect to bioassays and with
respect to targets will be used interchangeably. When a compound is indicated as
selective, by default it is with respect to one certain bioassay/protein target, and the
bioassay /protein target is neglected when no ambiguity is raised. A compound can
be selective in at most one bioassay. A compound ¢; that is selective in a bioassay
By, is denoted as ¢**. A compound ¢; that is not selective in a bioassay By (either

active and not selective, or inactive in By) is referred to as non-selective in By and

$http://www.ncgc.nih.gov/guidance/section3.html
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denoted as ¢*~. A compound that is non-selective in a bioassay By, but selective in
another bioassay B; is referred to as x-selective in Bj. The set of compounds in By,
is denoted as C. The set of selective compounds in By, is denoted as Si. The set of
non-selective compounds in By, is denoted as A;. The set of x-selective compounds

in By, is denoted as Si. Table 3.1 lists the notations that are used in this paper.

3.4 Methods
3.4.1 Compound Scoring

In dCPPP, the compound prioritization among a bioassay uses a linear scoring
function as in Equation 3.1,

§F = w] z;, (3.1)

where wy, is a weighting vector for bioassay By, @; is the feature vector of the com-
pound ¢;, and 3¥ is the score of compound ¢; in By. Each compound in a bioassay
is first scored using their features, and the compounds which have larger scores will
be ranked higher in the bioassay. The weighting vector wy will be learned for each

bioassay Bj.

3.4.2 Activity Prioritization

The dCPPP method will produce a ranking of compounds in a bioassay that ranks
compounds well based on their activities. That is, in general, compounds that are
more active will be ranked higher than those that are less active. To quantitatively
measure the activity ranking quality, we use a metric non-Concordance Index (denoted

as nCI) as follows,

nCI({34), ) = %k’ I(5F < &), (3.2)
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where P, = {¢; > ¢j|ci, c; € By} is the set of all possible ordered compound pairs in

By, 1(+) is the indicator function:

1, if z is true,
I(z) = (3.3)
0, otherwise.

In Equation 3.2, ¢; > ¢; indicates that ¢; is ranked higher than ¢; in ground truth

in By, based on their IC5, values, 3% < 5;“ indicates that compound ¢; is predicted

k

as being ranked lower than ¢; (i.e., ¢;’s predicted score §; is smaller than that of ¢;;
dCPPP ranks compounds with larger scores higher).

Essentially, nCI represents the fraction of mis-ordered compound pairs by a certain
compound ranking method. A lower nCI value indicates better ranking performance.
Therefore, activity prioritization seeks a scoring function that can produce lower nCI,
and thus we use nCI over the predicted ranking in By, as the loss (denoted as LF) for

activity prioritization in the dCPPP objective, that is,

LF =nCI({3%}, Cy). (3.4)

3.4.3 Bi-directional Selectivity Push with Power

To favor selective compounds in compound prioritization, two key questions need
to be addressed: 1). how to enforce the selective compounds to go beyond the ranking
structures of ordinary activity prioritization and get better ranked; and 2). how much
the enforcement should be and how to decide that. To address the first question, we
develop the bi-directional powered push scheme, which, for a target ¢, pushes t’s
selective compounds higher, and pushes ¢’s x-selective compounds lower in compound
ranking. To address the second question, we develop a scheme to determine push

powers by comparing ranking difference of a compound in multiple bioassays.
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Pushing up Selective Compounds

To push up selective compounds, dCPPP measures the ranking positions of selective
compounds and optimizes such positions. Specifically, the reverse height of a selective
compound [32] is used to quantitatively represent such ranking positions.

Reverse height of a selective compound is the number of non-selective compounds

that are ranked higher than the selective compound, that is,

Rt =R = ) IG < 38)7), (3.5)

CjEAk

where RF" is the reverse height of selective compound ¢ in By, Ay is the set of non-
selective compounds in By, and I(+) is the indicator function (Equation 3.3). Thus,
to enforce higher ranking of selective compounds, it is to minimize the reverse heights
of the selective compounds. In Equation 3.5, the predicted ranking scores are used to
indicate that the reverse height of a selective compound is produced from a ranking
model.

Push-up power for a selective compound decides how strongly a selective com-

pound cf+ should be pushed up in By, which depends on 1). how ¢; is ranked in
By; and 2). how ¢; is ranked in other bioassays B;’s which ¢; is also involved in.
Intuitively, if ¢; is ranked higher in B; (i.e., ¢; is very active to ¢; but not selective to
t1), ¢; should be pushed much higher in By and much lower in B;. This is because ¢;
is very specific to tj, and if ¢; is selected for B; (¢;), it will introduce low efficacy or
side effects.

Based on the above intuition, we define the push-up power for a selective com-

ket
pound ¢;

gf+ = g(Cf—i_, Bk? {Bl}’0T7 gT)
3.6
= exp {67101 — 5%) + ma (71 I, .
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where 01 is a parameter, and ¢(z, y|¢) is a thresholding function:

—y+¢§ for—y+£>0,
dal)=(@—ytre =4 o7 (3.7)

0, otherwise.

In Equation 3.6, 77" is the predicted percentile ranking of ¢; from By’s baseline ac-
tivity prioritization model, fﬁ’ is the predicted percentile ranking of ¢; from B;’s
baseline activity prioritization model, and ¢' is a thresholding parameter. Essen-
tially, the push-up power in Equation 3.6 considers whether cf+ has been ranked high
enough in By (ie., 1 — 7#%) and how differentially it is ranked in other bioassays
(i.e., ¢(Fi=, 75 F|€T)). If the ranking positions of cf™ in By, and other bioassays are not

sufficiently different, the push-up power is exponentially large.

Selectivity Loss with Powered Push-up To differentially push selective com-
pounds up, we take the average reverse heights of selective compounds enhanced by
respective push-up powers in the dCPPP learning objective, that is, the push-up loss
L5 is defined as

1
Lot = A > R gt (3.8)

c; €Sk
where S, is the set of selective compounds in By, |Sk| is the size of Sy.
Pushing down x-Selective Compounds

To push down x-selective compounds, dCPPP measures the ranking positions of
such x-selective compounds and optimize such positions. Specifically, the height [32]

of an x-selective compound is used to quantitatively measure its ranking position.
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Height of an x-selective compound is the number of compounds that are ranked

below the x-selective compound c;?_ (i.e., ¢; is non-selective in By but selective in a

different bioassay), that is,
Hf™ =H(c7)= > I(5 < 37) (3.9)

where H ]’-“_ is the height of x-selective compound c?‘ in By, CY is the set of compounds
in By, I(+) is the indicator function (Equation 3.3).

Push-down power for an x-selective compound determines how strongly the x-selective

compound should be pushed down in a bioassay. We define the push-down power for

an x-selective compound in bioassay By as follows,

h}f— = h<C§:_7 Bka Bl|0¢7 Si)

(3.10)
= exp{@i[ff_ + ¢(f§_7 fé+|§¢)]}

where @ is a parameter, ff’ is the predicted percentile ranking of ¢; in B}’s base-
line activity prioritization model, Fé* is the predicted percentile ranking of ¢; in B
(¢; € S;) from By’s baseline activity prioritization model, gb(f;“_, f§+|§¢) is threshold-
ing function as defined in Equation 3.7, and &* is the thresholding parameter. Thus,
the push-down power hf’ considers the difference of percentile rankings of ¢; in By,
(c; € S¢) and By (¢; € 5)). If fé* is not significantly higher than 77;?_, the push-down
power is large. Please note that a compound can appear in multiple bioassays, but
can be selective in only one bioassay. Therefore, we only consider the bioassay B; in

which ¢; is selective when we push down ¢; in By.

x-Selectivity Loss with Powered Push-down To differentially push x-selective

compounds down, we take the average heights of x-selective compounds enhanced by
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their push-down powers in the dCPPP learning objective, that is, the push-down loss

L5~ is defined as

T

1
k— __ k— k—
£ =5 S oHE L nh (3.11)
k CjGS,?

3.4.4 Optimization Problem and Solutions

The overall optimization problem of dCPPP to learn a selectivity prioritization
model (i.e., the scoring function as in Equation 3.1, parameterized by wy), which
ranks selective compounds higher and x-selective compounds lower, is formulated as

follows,

min £F = (1 — a — B)LF + aLh + pLE, (3.12)

W
where  and 8 are two weighting parameters (« € [0,1],8 € [0,1],a + 8 € [0,1]).
Thus, the dCPPP objective is a weighted combination of the loss on activity prioritiza-
tion (L£*), the loss on pushing up selective compounds (£*T), and the loss on pushing
down x-selective compounds (£F7).
Since the indicator function in Equation 3.3 is not continuous or smooth, we use

the logistic loss as the surrogate function [35]:
I(z <vy) ~log[l + exp(—(x — y))] = —logo(x — y), (3.13)

where o(x) is a sigmoid function:

1
" Tt exp(—a)’

o(z) (3.14)

The surrogate function is continuous, smooth and differentiable. Thus, the loss £*
in Equation 3.12 with the surrogate function is differentiable, and thus we can use

gradient descent [36] to solve the optimization problem.
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Gradient of Powered Push

The gradient of the loss function in Equation 3.12 is composed of the gradients on
the loss of compound ranking, the loss on push-up and the loss on push-down, that

is,

where
1 “k =k
VwkEEZM Y.Vl <)), (3.16)
t {s§>s?}
1
Vi L = > gl Vi RET
| k| cf+€Sk
1 ket <kt <k (3.17)
= m Z {gi"- Z Vau I(5; <55 e
F cFtes, ¢j €A
and
1
VL™= —= > {ni -V, H T}
Sl 2=
¢ pi
_ ! SR Y VLI <)) (319
|Slf| kg ’ ¢, €C - Y .
Cj k T

In Equation 3.16 to Equation 3.18, V,,, I(s% < S’f) will be approximated by the
gradient over logistic loss function (Equation 3.13). The variable wy, is updated via

the following rule:

where A is the learning rate.
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3.4.5 System Equilibrium from Powered Push

It is possible that after one iteration of the powered push among all related bioas-
says, the ranking models are still not optimal due to the change of ranking structures
of other updated models. Thus, multiple iterations of systematically powered push
should be conducted until an equilibrium is achieved among all the bioassays. When
multiple iterations of dCPPP pushes are conducted, the optimal model from the pre-
vious iteration serves as the baseline model for the next iteration.

The initial baseline model for the first iteration corresponds to dCPPP at (o =
0,5 = 0), that is, the standard ranking model without any push. This baseline
model is denoted as dCPPP°. If each bioassay uses its own optimal a and ( values
(i.e., the a and [ value that together give the optimal performance for each bioas-
say), the corresponding optimal model is denoted as dCPPP*. Thus, dCPPP* from
the previous iteration is the baseline for the next iteration. The models trained in
the t-th iteration are denoted by having (¢) (e.g., dCPPP*(1), dCPPP°(2)) and thus
dCPPP*(t — 1) = dCPPP°(¢). Algorithm 1 presents the overall iterative algorithm for

dCPPP optimization.
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Algorithm 1: Iterative Optimization for dCPPP

Input: a set of training bioassays { By };
parameters o, £, 0T, 3, €4, 0%
learning rate \; max number of iterations niters

Output: ranking models {dCPPP}}.

fort=1,---  niters do

for each bioassay B do
if t == 1 then
dCPPPS () = dCPPP;
else
dCPPPS (t) = dCPPP; (t — 1)
end
while not converged do

Update dCPPP}(¢) upon dCPPP}(t) using gradient descent (Eq. 3.19)

end
end
end
return {dCPPP;}

3.5 Materials

In this section, we present the details on dataset generation, experimental protocol

and evaluation metrics. All the datasets and source code are available online and on

our website’

3.5.1 Dataset Generation

The dataset for the experimental evaluation is very critical, and therefore we

present the dataset construction in detail here. We constructed a set of bioassays

from ChEMBL! in accordance with the protocols in Section 3.5.1 and Section 3.5.1

in order to 1). have a sufficiently large number of bioassays to study; and 2). have

a sufficiently large number of active and selective compounds in each bioassay to

reliably learn models.

Yhttp://cs.iupui.edu/~1iujunf/projects/selRank_2017/

Ihttps://www.ebi.ac.uk/chembl/, v.22 1, accessed on 12/08,/2016)

www.manaraa.com



83

Initial Bioassay Selection

We first selected a set of bioassays which are enriched with selective compounds,
and meanwhile, the compound selectivity in these bioassays can be largely defined
by other selected bioassays. This set of bioassays provides a closed space from which
a subset of bioassays will be further constructed (Section 3.5.1) for the experiments.

We constructed this initial set of bioassays as follows:

1. Identify all “binding” bioassays with one “single protein” target;

2. From such single-target binding bioassays, find all the bioassays that use ICj;, to
measure compound activities, and keep the compounds in such bioassays that
have exact ICsq values (i.e., discard from each bioassay the compounds with
ICsy ranges, for example, IC59 > 0.0001uM; also discard compounds whose

measurement cannot be converted to ICsy values);
3. Combine bioassays of a same target into one bioassay;
4. Clean the combined bioassays as follows:
(a) If a compound appears multiple times with a same ICjyq value in one bioas-

say, keep the compound with the unique ICsq in the bioassay;

(b) If a compound appears multiple times with different IC;5y values in one
bioassay, remove the compound and all its activities from the bioassay.
This is to avoid the complication to resolve conflicts of inconsistent activity

values;

(c) If a compound has an invalid ICs, value (e.g., negative or zero ICsg), remove

the compound from the bioassay.

5. Select the cleaned bioassays that have at least 20 active compounds.

After the above process, we identified 1,033 bioassays in total. Among these 1,033

bioassays (denoted as BY), 594 bioassays have selective compounds that are defined
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within these 1,033 bioassays. Among these 594 bioassays, 553 bioassays have selective
compounds that are defined within these 594 bioassays. Among these 553 bioassays,
227 bioassays have more than 10 selective compounds, and these selective compounds
are involved in 529 out of the 553 bioassays. This set of 529 bioassays represents the

initial closed set of selectivity-enriched bioassays.

Initial Bioassay Pruning

Among the initial closed set of 529 selectivity-enriched bioassays, we defined se-
lectivity for the compounds in each bioassay with respect to the rest 528 bioassays.
These 529 bioassays are further pruned according to the following protocol in order

to have reasonable number of compounds for dCPPP learning;:
1. If a bioassay has less than 100 compounds, keep the bioassay as it is;

2. If a bioassay has more than 100 compounds, identify all its selective compounds

and x-selective compounds:

(a) If such identified selective and x-selective compounds are more than 100,

keep all such compounds and discard all the other compounds;

(b) If such identified compounds are less than 100, randomly select active com-

pounds in this bioassay until the total number of selected compounds reaches

100.

The above pruning process retains all the selectivity related information in the
original closed space of selectivity-enriched bioassays. All the remaining bioassays
and their compounds are used as the final dataset in our experiments. This set of 529
pruned bioassays is denoted as BS. In B, 408 bioassays have at least one selective
compound. This set of 408 bioassays with selective compounds is denoted as BS. The
rest of 121 bioassays (i.e., BS\ B¢) do not have selective compounds, but they contain

x-selective compounds (i.e., selective compounds in other bioassays).
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Dataset Description

We use B¢ in our experiments. Models with powered-push will be built for the
bioassays in BS. In B, 155 bioassays have 10 ~ 50 selective compounds and less than
500 compounds. In this manuscript, we only report experimental results on these 155
bioassays, denoted as BI", because they have on average more selective compounds.
Additional experimental results on B¢ are available in the Supporting Information.
Note that if a bioassay in the final dataset has more than 100 compounds, these
compounds have to be either selective compounds or x-selective compounds, based

on the protocol in Section 3.5.1.

B: the entire bioassay space

BY: 1,033 activity-enriched bioassays

B¢: 529 selectivity-closed bioassays

B¢: 408 bioassays with selective compounds
B':155 bioassays with 10 ~ 50

selective compounds

Bi-directional push strategy will be
applied to bioassays in BI" within

the context of B¢

Fig. 3.2.: Relations among Bioassay Sets

Table 3.2.: Dataset Description

dataset [{B}| e}l |Gl Al [S]  [S}]
B: 520 35226 10450 80.24 24.26 31.12
B 155 14,568 102.27 80.67 21.60 36.56

after split B 155 14568 10227 8418 18.09 18.61

The column “|{B}|” has the number of bioassays in the dataset. The column “|{¢;}|” has
the total number of unique compounds in the dataset. The column “|Cj|” has the average
number of compounds in each bioassay. The column “|A|” has the average number of non-
selective compounds in each bioassay. The column “|Sy|” has the average number of selective
compounds in each bioassay. The column “|S*|” has the average number of x-selective
compounds in each bioassay.

before split
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Figure 3.2 presents the relations among all bioassay sets generated during the
dataset construction process. Table 3.2 (the “before split” row) presents the data
description for B¢ and Bl*. Figure 3.3 presents the size of bioassays in B. Figure 3.4

presents the size of bioassays in B".

900
700 600
500 400
= 300 20 2
-0 T

0 I I I I 0
0 100 200 300 400 500
bioassay index
Fig. 3.3.: Bioassay Size in B¢ (Before Split)
300 al
k
200 - 1Sl
2100 p
O I I I I O
0 30 60 90 120

bioassay index

Fig. 3.4.: Bioassay Size in B* (Before Split)

3.5.2 Compound Feature Generation

We used AFGen™ to generate binary compound fingerprints from the compound
structures provided by ChEMBL. Each dimension of the fingerprints represents a

compound substructure, and the binary value at each dimension represents whether

**http://glaros.dtc.umn.edu/gkhome/afgen/overview
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the corresponding substructure is present in the corresponding compound or not.
Previous research [37] demonstrates that such compound fingerprints are superior to
others in compound classification.

For each bioassay, we calculated the pairwise Tanimoto similarity [38] of all the
compounds in the bioassay, and used each row of the Tanimoto matrix as the fea-
ture representation of the corresponding compound. Intuitively, the features of a
compound ¢; represent the similarities between ¢; and all training compounds in the
same bioassay. This feature representation scheme is inspired by the idea in Que
and Belkin [39]. Therefore, a same compound will have different features in different
bioassays, and the different compound information that may induce different ranking
structures is also encoded in the bioassay-specific compound features. This compound
feature representation is unique compared to the existing compound fingerprint rep-
resentations, and it is generated in a way that is dependent of computational tasks.

In our experiments, the bioassay-specific compound feature representation achieves

best CI (will be discussed later in Section 3.5.4) 0.717 in dCPPP° on B

s 7

compared
to the best CI 0.734 using AFGen features in dCPPP°, and the best CI 0.748 using
Tanimoto on AFGen features as a kernel in SVMRank [34]. Although AFGen fea-
ture with SVMRank achieves better results, it is significantly slower (i.e., 640 seconds
on average to train a model) than bioassay-specific compound feature with dCPPP°
(i.e., 79 seconds on average). Similarly, AFGen feature in dCPPP® is also significantly
slower (i.e., 310 seconds on average to train a model) than bioassay-specific com-
pound feature in dCPPP° (i.e., 79 seconds on average). Thus, the bioassay-specific
compound feature representation together with dCPPP° gives the best performance in
terms of the combination of run time and the ranking results, and will be used in the

experiments.
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3.5.3 Experimental Protocol

We randomly split each bioassay into five folds and make sure that selective com-
pounds are evenly split into the five folds. We conducted five-fold cross validation
over the splits to evaluate the dCPPP performance. Note that once the data are split,
the selectivity for any training compounds needs to be re-defined with respect to only
the training (i.e., known) compounds of the bioassays. This is because that testing
compounds are hold out as unknown compounds, and thus cannot be used to define
selectivity. Similarly, the selectivity of the testing compounds (i.e., the ground-truth
for performance evaluation) is also re-defined with respect to training data. In prin-
ciple, the selectivity re-defined after data split will be different from that before data
split. However, due to the fact that the data are split randomly and independently
for selective (defined before data split) and active compounds, it is expected the se-
lective (defined after data split) and active compounds are still evenly distributed
across folds. Table 3.2 (the “after split” row) presents the data description after the
split. After the data split, all the 155 bioassays in BI* have selective compounds in at
least one testing fold. The evaluation metrics are only calculated and averaged over

testing folds which have selective compounds.

3.5.4 Evaluation Metrics

We define and use the following metrics to evaluate the performance of dCPPP.
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Average Precision at k (ap@k)

The average precision at k (ap@k)'f is a popular metric used in LETOR. It
considers the ranking positions of selective compounds among the top k positions of

the ranking list. Average precision at k is defined as:

k

P(i)
Qk = —_— 3.20

op ;mm(ysk|,k)’ (3:20)
where P(i) is the precision* among the top-i items in the ranking list. Higher ap@k

values indicate that selective compounds are ranked higher.

Reciprocal Selectivity Position Index (RSPI)

Absolute ranking position is an important metric in compound prioritization. This
is because in real applications, typically, the top few compounds in a ranking list will
be of primary interest. Thus, we define a reciprocal selectivity position index, denoted
as RSPI, to measure the average absolute reciprocal ranking positions of selective

compounds in a ranking list:

RSPI(Cy) =

Z 5 (3.21)

‘ klcES

where pF is the ranking position of a selective compound ¢; in bioassay By, predicted
by a ranking model. The reciprocals are used to favor highly ranked compounds
by up weighting the contribution of highly ranked selective compounds, and down
weighting the contribution of lowly ranked selective compounds. Higher RSPI values
indicate higher average absolute ranking positions for selective compounds and thus

better performance of the ranking model.

"https://wuw.kaggle.com/wiki/MeanAveragePrecision
Ynhttps://en.wikipedia.org/wiki/Information_retrieval#Precision
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Normalized Reciprocal Selectivity Position Index (NRSPI)

A normalized version of RSPI, denoted as NRSPI, is defined via the inclusion of
reciprocal ranking positions of all the compounds in a bioassay, so as to also measure

the relative ranking positions of selective compounds in the ranking list:

1 1
NRSPI(Cy) = > — —. (3.22)
ci €Sk P c; €C pj

Higher NRSPI values indicate higher average relative reciprocal ranking positions of
selective compounds. Both RSPI and NRSPI are similar to ap@k, a popular metric
for ranking performance, but RSPI and NRSPI consider the ranking structures among

selective/active compounds.

Normalized Selectivity Position Index (NSPI)

We also define a normalized selectivity position index, denoted as NSPI, which

measures the average percentile rankings of selective compounds:

1
NSPI(C}) = ——— P 3.23
( k) |Ck| « |Sk|C;kpz’ ( )

where pF is the ranking position of a selective compound ¢; in bioassay By, predicted
by a ranking model. NSPI is normalized by the size of bioassays. Lower NSPI values
indicate higher ranking positions for selective compounds on average.

Concordance Index (CI)

Concordance Index (CI) is a popular metric that is used to evaluate the per-

formance of ranking algorithms [40]. CI measures the fraction of correctly ordered

www.manaraa.com



91

pairs among all possible pairs and thus it is complementary to the nCI defined in
Equation 3.2, that is,
CI(Ck) =1 —nCI(C). (3.24)

Higher CI values indicate better prediction overall (i.e., more concordant pairs are
predicted correctly).

In our experiments, we measure the CI values over all compounds C}, in a bioassay
By. We also measure the CI values among only selective compounds Si, and among
only non-selective compounds Ay, in By, respectively. In this case, the CI values are

specifically denoted as sCI and aCI, respectively.

3.6 Conclusions

We have developed the differential compound prioritization via bi-directional push
with power method dCPPP. In dCPPP, activity ranking and selectivity prioritization
are both tackled within one differential optimization model that leverages collabo-
rative information from multiple bioassays. A bi-directional powered push strategy
is implemented in dCPPP, which pushes selective compounds up and x-selective com-
pounds down in ranking. We have also conducted a comprehensive set of experiments
and analysis on the ranking performance of dCPPP. Our experiments demonstrate that
dCPPP is very effective in prioritizing selective compounds while maintaining a good
activity ranking.

Overall, dCPPP achieves significant improvement in compound selectivity prioriti-
zation. In specific, dCPPP* outperforms dCPPP° in selective compound prioritization
in terms of ap@5 at 47.0%, and in terms of RSPI at 26.1%, with statistical signif-
icance. Meanwhile, dCPPP still preserves a good overall activity ranking among all
compounds. Specifically, dCPPP* maintains a similar performance in CI (even slightly
better by 1.2%) as dCPPP°. The overall experimental results on all evaluation metrics
are available in Section 3.7.1, and dCPPP needs only two iterations in order to achieve

its optimality.
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The experimental results show that, after the first iteration, the performance of
dCPPP increases significantly in terms of all evaluation metrics related to selective
compounds prioritization, and slightly decreases in compound activity ranking (e.g.,
in CI). Specifically, the performance of dCPPP* in terms of ap@5 and RSPI increases
from 0.558 and 0.411 to 0.687 and 0.490 over dCPPP°, respectively. However, the
compound activity ranking performance, in terms of CI, decreases from 0.635 to
0.631 in the first iteration. In the second iteration, dCPPP is still able to improve
compound selectivity prioritization but the improvement is not as significant as that
from the first iteration. This indicates that the system quickly converges to a stable
state, and the selectivity prioritization has been updated toward optimal conditions.
Specifically, the performance in terms of ap@5 and RSPI is increased from 0.687 and
0.490 to 0.702 and 0.499, respectively, which is relatively marginal compared to that
in the first iteration. On the other hand, dCPPP tries to fix the compound activity
ranking in the second iteration that has been altered in the first iteration, and thus the
CI performance increases from 0.631 to 0.636 in the second iteration. Detailed results
on compound ranking and selective compound prioritization over the two iterations
and over the hyperparameters are available and discussed in Section 3.7.2 and 3.7.3.

In terms of top-N ranking performance, dCPPP has significantly better performance
in retaining top-N compounds of ground truth, in ranking selective compounds among
top, and in retaining selective compounds from top-N compounds of ground truth.
In specific, in terms of retaining top-N compounds, dCPPP* has better performance
(on average 2.40/6.59 top-5/10 compounds retained among top5/10 rankings, re-
spectively) compared to that of dCPPP° (on average 2.37/6.51 top-5/10 compounds
retained among top5/10 rankings, respectively). In terms of ranking selective com-
pounds among top, dCPPP* significantly outperforms dCPPP°. On average, dCPPP*
ranks 2.52/3.21 selective compounds among top-5/10 rankings, but dCPPP° ranks
only 2.25/3.04 selective compounds among top-5/10 rankings. Moreover, among the
average 1.98 selective compounds among top-5 compounds of each bioassay in the

ground truth, dCPPP* is able to retain 1.51 of them on average, while dCPPP° is able
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to only retain 1.38. Among the average 1.01 selective compounds in top-6 to top-10
compounds of ground truth, dCPPP* is able to push 0.66 of them into top 5, while
dCPPP° has 0.56 such compounds in top 5. Detailed results and analysis on top-N
performance are presented in Section 3.7.4.

Overall, our experiments demonstrate that dCPPP is very effective in compound
selectivity prioritization and competent in compound activity ranking. Detailed result

analysis will be thoroughly discussed in Section 3.7.

3.7 Experimental Results

In the results presented in this section, we used parameters 7 = 0.5 and #* = 0.5.
We tested combinations of various 07 and 6% values, and found that 7 = 0.5 and
6% = 0.5 give the best performance over all the evaluation metrics overall. Based on
our experiments, only two iterations will lead to systematic convergence. Therefore,

we only report the results from the two iterations.

3.7.1 Overall Performance

Table 3.3 presents overall performance comparison between the dCPPP° and the
optimal dCPPP* models. Note that for each bioassay, its optimal dCPPP* is the model
that introduces the best RSPI value, and thus the performance of dCPPP* in terms of
other metrics (e.g., ap@5; the dCPPP*(¢) rows in Table 3.3) does not necessarily cor-
respond to the optimal in those metrics. The optimal performance in each respective
metric is calculated as the “b-imprv (%)” values, and therefore, the performance in
“b-imprv (%)” does not necessarily correspond to a same set of parameters. The “diff
(%)” values in Table 3.3 are calculated as percentage difference of average dCPPP*
performance over average dCPPP° performance, where the average performance is cal-
culated as the average over all the bioassays in respective metrics. The “imprv (%)”
values in Table 3.3 are calculated as the average of bioassay-wise performance im-

provement from dCPPP° over dCPPP*.
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In dCPPP iteration 1 (i.e., the row block where “iter” has “1” in Table 3.3), the
average performance of dCPPP* is significantly better (i.e., “imprv (%)”) than that of
dCPPP° in terms of ap@5, ap@10, RSPI, NRSPI and NSPI (p-values 6.68e-24, 1.06e-25,
7.96e-23, 2.58e-28 and 9.46e-18, respectively). In terms of CI and aCI, dCPPP* is not
significantly different (p-values 4.36e-1 and 2.12e-1, respectively) from dCPPP° on the
average performance (i.e., “imprv (%)”). This demonstrates that dCPPP is able to
better prioritize selective compounds while retaining the overall ranking structures of
active compounds. In terms of sCI, it turns out that dCPPP* is still significantly better
(p-value 1.40e-3) than dCPPP° on the average performance (i.e., “imprv (%)”). This
indicates that for a significant amount of bioassays, differential push could also help
activity ranking. In terms of the best performance with respective to each metric (i.e.,
“b-imprv (%)”), dCPPP* significantly outperforms dCPPP° on all the metrics including
CI, aCI and sCI. This indicates that by pushing compounds differently, it may also
help better rank all the compounds overall.

In dCPPP iteration 2 (i.e., the row block where “iter” has “2” in Table 3.3), the
average ranking performance (i.e., “imprv”) of dCPPP* is still significantly better than
that of dCPPP° in all the metrics (except in aCI and sCI where the improvement is not
significant). However, the performance improvement is not as great as that in iteration
1, and the smaller improvement also applies in the best performance with respect to
each metric (i.e., “b-imprv (%)”). This indicates that the iterative learning process
starts to converge in iteration 2. In particular, the dCPPP* performance of ranking
both active and selective compounds (i.e., in terms of CI) is improved significantly
from dCPPP°. The performance in terms of aCI and sCI is also improved in iteration
2 (i.e., positive “diff (%)” in iteration 2 compared to the negative value in iteration
1). This indicates that in iteration 2, the learning process tends to fix the broken
ranking structures among both selective and active compounds and thus converge
to a systematically stable state. The results from the two iterations show that the

dCPPP method is able to continuously push the selective/x-selective compounds over
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iterations, and meanwhile, it tends to maintain good ranking structures among both

selective and active compounds.

Over these two iterations (i.e., the row block where “iter” has “overall” in Ta-

ble 3.3), dCPPP* significantly outperforms dCPPP° in all the evaluation metrics (except

in CI and aCI, in which the improvement is not significant). In particular, dCPPP is

able to improve selectivity prioritization in terms of ap@5 at 47.003%, and in terms

of RSPTI at 26.096%, both with statistical significance. These results demonstrate the

superiority of the dCPPP in prioritizing selective compounds.

3.7.2 Selective Compound Prioritization
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Fig. 3.5.: Evaluation of dCPPP(1) on B
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Figure 3.5a, 3.5b, 3.5¢, 3.5d and 3.5e present the results of dCPPP(1) in terms of

ap@5, ap@10, RSPI, NRSPI and NSPI, respectively, over various « and /3 values (i.e.,

the parameters to weight the push-up and push-down terms, respectively, in dCPPP
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Fig. 3.6.: Evaluation of dCPPP(2) on B

Equation 3.12). The values in these figures are the average performance in respective
evaluation metrics over all the bioassays in which both push-up for selective com-
pounds and push-down for x-selective compounds can be applied (i.e., bioassays in
dataset BI"). Correspondingly, Figure 3.6a, 3.6b, 3.6c, 3.6d and 3.6e show perfor-
mance in terms of ap@5, ap@10, RSPI, NRSPI and NSPI of dCPPP(2) over different «

and (3 settings.

dCPPP(1) Performance

Figure 3.5a and 3.5b show that in the first iteration, dCPPP has the optimal
ap@5 performance (ap@5 = 0.634) at (« = 0.6, = 0.2), and the optimal ap@10
performance (ap@10 = 0.688) when o = 0.6 and 8 € [0.2,0.4]. The optimal results

demonstrate that, when push-up weight is large (a > 0.6) and push-down is also
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applied, the selective compounds are preferably pushed into top-5/10 of the ranking
lists.

In Figure 3.5a, there is a notable gap between the ap@5 values when a = 0
and a > 0. Specifically, when the push-up starts to take effect (i.e., « is increased
from 0), the ap@5 values are increased significantly. A similar gap also exists in
the ap@10 performance between v = 0 and o > 0 in Figure 3.5b. This indicates
that even a slight push-up could alter the ranking structure significantly and push
the selective compounds up into the top of the ranking lists. However, the full-
power push-up (i.e., @ = 1.0) without considering the activity ranking performance
among compounds (i.e., considering only the £+ term and neglecting the £F and £+~
terms in Equation 3.12) does not lead to the optimal solution in terms of both ap@5
and ap@10. This indicates that the prioritization of selective compounds over non-
selective compounds is structurally constrained by the ordering among both selective
and non-selective compounds together, and leveraging the information from non-
selective compounds and their ordering structures is beneficial in improving selective
compound prioritization in top-5/10 of the ranking.

On the other hand, push-down over the x-selective compounds also benefits the
selective compounds prioritization. For example, ap@10 is increased from 0.682 at
(o =0.4,5=0.0), to 0.687 at (« = 0.4, f = 0.2) in Figure 3.5b. This may be due to
the fact that the push-down exerts extra force on altering the overall ranking struc-
tures of each bioassay and thus better separates selective compounds from x-selective
compounds. However, an over push-down does not benefit selective prioritization any
more. For example, ap@10 is decreased from 0.688 at (« = 0.4, = 0.4) to 0.683
at (« = 0.4,8 = 0.6) in Figure 3.5b. The reason could be that an overemphasis on
x-selective becomes detrimental to the overall ranking structures among both selective
and non-selective compounds.

Figure 3.5¢ presents the performance in terms of RSPI of all the B!" bioassays in
the first iteration. In terms of RSPI (i.e., the average reciprocal positions of selective

compounds), the best performance of dCPPP (RSPI = (.458) is achieved at the param-
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eter region « € [0.4,0.6], 8 € [0.2,0.4], that is, when both the push-up and push-down
are applied, the selective compounds are most effectively to be ranked higher in the
bioassays.

The trend of performance in RSPI is similar to that in ap@k, that is, 1) when « is
increased from 0 (i.e., the push-up starts to take place), the RSPI values are signifi-
cantly increased; 2) the full-power push-up does not lead to optimal performance; 3)
push-down over the x-selective compounds also has effects on better ranking selective
compounds; and 4) an over push-down (e.g., § > 0.6 with & = 0.4) does not benefit
selectivity prioritization; etc.

Figure 3.5d and 3.5e demonstrate concordant trend of NRSPI and NSPI with that
of ap@5, ap@10 and RSPI, that is, the best performance in terms of NRSPI and NSPI,
respectively, happens with non-zero o and  values. NRSPI (Equation 3.22) is a very
similar metric to RSPI (Equation 3.21), which considers all the compounds, instead
of only selective compounds as in RSPI, in evaluating ranking positions of selective
compounds. High RSPI and NRSPI values associated with non-zero o and (3 values
indicate that selective compounds are ranked both higher in their average absolute
positions and higher in their average relative positions among all the compounds.
NSPI measures the average percentile ranking of selective compounds. On average,
the selective compounds are ranked at 77 percentile at best (« = 0.6, = 0.2 in

Figure 3.5¢), while in the baseline dCPPP° the average ranking percentile is 73.

dCPPP(2) Performance

Figure 3.6a and 3.6b present the performance in terms of ap@5 and ap@10 in the
second iteration, respectively. The dCPPP method has optimal average ap@5 value
(ap@5 = 0.691) at (o = 0.6, = 0.2), and optimal average ap@10 value (ap@10 =
0.737) at (a« = 0.2, = 0.4), and (v € [0.4,0.8], 5 = 0.2). Both of ap@5 and ap@10 in
the second iteration are significantly improved from that in the first iteration (8.99%

and 7.12%, respectively). This demonstrates that as in dCPPP(2), more selective com-
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pounds are pushed into top-5/10 as the push-up and push-down powers are applied
(> 0, > 0). Please note that in Table 3.3, the best ap@5 and ap@10 values are
calculated according to dCPPP* that is defined with respect to optimal RSPI values,
but in Figure 3.6a and 3.6b, the ap@5 and ap@10 values are the average values over
all the bioassays under certain o and 3 values.

In the second iteration, the change of the ap@5 and ap@10 over o and [ values is
generally smooth. However, there are still some minor irregular trends. For example,
ap@5 values first decrease from 0.687 at (aw = 0.0, 5 = 0.2) to 0.686 at (o = 0.2, =
0.2), then increase to 0.688 at (« = 0.4, = 0.2), although the changes are very
small. This may indicate that in the second iteration, the ranking structures become
more sensitive to push powers, since they are close to optimal. Also, in the second
iteration, both ap@5 and ap@10 results fall into a much smaller range over various «
and [ values (i.e., ap@5 € [0.684,0.691] and ap@10 € [0.733,0.737]) compared to that
of the first iteration (i.e., ap@5 € [0.536,0.634] and ap@10 € [0.596, 0.688]). The best
results of ap@5 and ap@10 are only 1.02% and 0.55% better than their worst results
in the second iteration. Actually, this is a common trend among all the evaluation
metrics in the second iteration, which indicates that the system is becoming stabilized
in terms of ap@k performance.

In the second iteration, as shown in Figure 3.6¢, the best RSPI (RSPI = 0.492) is
still at (a« = 0.6, 5 = 0.2) as that in the first iteration. The best RSPI performance
from the second iteration is improved by 7.42% from that in the first iteration (RSPI
= 0.458). However, some other a and f settings (i.e., (« = 0.2,8 = 0.0), (a =
0.2,5 = 0.4), (. = 0.2, = 0.4)) also result in similar optimal RSPI performance.
This indicates that the system is becoming stabilized and more sensitive to push
powers. The RSPI performance results from the second iteration also show that when
push-up power is applied (i.e., a > 0), the results are better than that without push-
up power (i.e., « = 0). However, too large push-up power (i.e., &« > 0.6) does not
yield optimal results. This is a similar trend as in the first iteration. Similarly, a

full push-down also breaks the overall ranking structures among selective and non-
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selective compounds, and thus, a non-optimal result (RSPI = 0.490) is expected when
g = 1.0.

Figure 3.6d and Figure 3.6e present the performance in terms of NRSPI and NSPI
of BI" bioassays in the second iteration, respectively. In Figure 3.6d and Figure 3.6e,
NRSPI and NSPI also have similar trend with that of RSPI in Figure 3.6c. That
is, when moderate push-up and push-down powers are applied, the optimal results
are achieved. Specifically, in terms of NRSPI, the optimal result (NRSPI = 0.440) is
achieved at (o = 0.2, = 0.4), (a =0.2,5 = 0.6), and (« = 0.6, = 0.2). In terms
of NSPI, the optimal result (NSPI = 0.216) is achieved at (« € [0.4,0.2], 5 = 0.2).

Overall Performance for Selective Compound Prioritization

For all the bioassays, we compared their ap@5, ap@10, RSPI, NRSPI and NSPI
values of dCPPP at (o = 0.6, 8 = 0.2) with the respective values of dCPPP° in both
iteration 1 and 2 in Table 3.4. The paired t-tests demonstrate the significance of the
improvement from dCPPP on dCPPP° in iteration 1. However, in iteration 2, the im-
provement is relatively less significant (though mostly still significant at 5% confidence
level). This is expected as the ranking starting to converge to a systematically stable
state. Additionally, the small difference among performances with various push-up

and push-down powers also indicates that the system is approaching an equilibrium.
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3.7.3 Compound Ranking

Figure 3.5f, 3.5g and 3.5h present the CI values among all compounds, aCI among
non-selective compounds and sCI among selective compounds over all the bioassays in
the first iteration, respectively. Correspondingly, Figure 3.6f, 3.6g and 3.6h present
the respective values over all the bioassays in the second iteration. In Figure 3.5f,
as a and [ increase, the CI values over all the bioassays decrease in general. This is
anticipated as increasing o and [ values will induce less emphasis on overall ranking
structures as in Equation 3.12 and thus decreased CI values. However, dCPPP at
(a = 0.2, 8 = 0.0) slightly increases CI (CI = 0.636) from dCPPP° (CI = 0.635). This
may be due to the fact that pushing up selective compounds may affect the ranking
on other non-selective compounds and thus increase CI. Figure 3.5g shows the similar
trend over aCI as that of CI, because the majority of compounds are non-selective
compounds in the bioassays.

In iteration 2, Figure 3.6f and 3.6g show the similar trend that higher o and
values will lead to lower CI and aCI values. Also, dCPPP achieves both optimal CI and
aCI at (« = 0.0, 5 =0.0) (CI = 0.634 and aCI = 0.594, respectively). This is because
that, without any emphasis on selectivity, dCPPP is only interested in the ranking
structure among all compounds by their activities. However, dCPPP also achieves
optimal CI at (a = 0.0, = 0.8) and (o« = 0.6, 8 = 0.2). This indicates that in this
iteration, dCPPP tends to repair the skewed active compound ranking structures even
during selective compound prioritization.

In Figure 3.5h, the ranking performance in terms of sCI among only selective com-
pounds changes relatively irregularly. Specifically, with o € [0.4,0.6], 8 € [0.2,0.4]
(i.e., the optimal parameter region in which RSPI achieves the best), sCI is even below
0.5 (i.e., random ranking). This is because the selective compounds may be pushed
into discordant orders compared to the ground truth. Note that the push-up power
(Equation 3.6) is defined based on the difference of percentile rankings of a compound

in multiple bioassays. Therefore, different selective compounds may receive different
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push powers within a bioassay due to their ranking positions among others bioas-
says. Together with the combinatorial influence from multiple x-selective compounds
pushed-down at same time in the same bioassay, it is less likely that the selective
compounds are pushed up but still in their original orders as before the push.

In Figure 3.6h, dCPPP also achieves optimal sCI (sCI = 0.471) among selective
compounds iteration 2 at (a = 0.0, = 0.0). The reason is similar to that of Fig-
ure 3.6f and 3.6g, that is, a full emphasis on the compound activity prioritization
without any selectivity push (i.e., =0 and $=0) will introduce a better overall rank-
ing structure based on compound activities, and therefore, the selective compounds
are also prioritized based on their activities. As a and [ increase, sCI starts to vary
irregularly. This is still because that different selective/x-selective compounds will
receive different push-up/-down powers, depending on the compounds’ ranking per-
centile differences among bioassays, and thus pushed into discordant pairs compared
to the ground truth. Similar to the ap@5, ap@10, RSPI, NRSPI and NSPI values,
which fluctuate in a very small range in iteration 2 (Section 3.7.2), CI, aCI and sCI
also become more stable in iteration 2 than in iteration 1. This also indicates that
the overall ranking is converging to a systematically equilibrium state in the second

iteration.

3.7.4 Top-N Performance

In this section, we evaluate the top-N performance of dCPPP.

Compound Ranking

Table 3.5 presents the top-N (N = 5 and 10) performance of dCPPP compared
to dCPPP° in ranking compounds (both selective and non-selective). Since a = 0.6
and § = 0.2 represent a reasonably good set of parameters for all the bioassays
overall as indicated in Section 3.7.2, we compare dCPPP at (o = 0.6, = 0.2) in

top-IN performance evaluation. Please note that dCPPP* corresponds to the model
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Table 3.5.: Top-N Performance on Compound Ranking (Compound Counts)

iter N dCPPP° dCPPP(0.6,0.2) dCPPP*
) 5 2.37 2.31 (7.59 x 1072) 2.36 (9.40 x 1071)
10 6.51 6.42 (2.47 x 1072) 6.50 (7.74 x 1071)
5 5 2.36 2.39 (9.18 x 1072) 2.40 (4.02 x 1072)
10 6.50 6.56 (1.45 x 1072) 6.59 (2.80 x 1073)

The column “N” has the numbers of compounds on top of the ranking results that are
considered. The columns “dCPPP°”, “dCPPP(0.6,0.2)” and “dCPPP*” have the number of
compounds from the top-N compounds in the ground truth that are still ranked among
top N by dCPPP°, by dCPPP at (o = 0.6, 8 = 0.2) and by dCPPP*, respectively. The numbers
in parentheses in “dCPPP(0.6,0.2)” and “dCPPP*” columns are the p-values comparing the
results of dCPPP and dCPPP* with those of dCPPP°, respectively.

which achieves optimal performance in terms of RSPI for each individual bioassay
using their respective optimal o and § values, and the baseline model in iteration 2
dCPPP°(2) that dCPPP at (o = 0.6, 3 = 0.2) and dCPPP* improve from is dCPPP*(1).
In the first iteration, among the top 5/10 of the ranking results, dCPPP at (o =
0.6, = 0.2) rank fewer compounds (i.e., 2.31/6.42 compounds, respectively) that
are among top 5/10 in the ground truth than dCPPP° (i.e., 2.37/6.51 compounds,
respectively) and the difference is close to statistical significance (p-value 7.59 x
1072/2.47 x 1072). The optimal dCPPP* ranks about same ground-truth top-5/top-
10 compounds (i.e., 2.36/6.50) compared to dCPPP° (the difference is statistically
insignificant). This indicates that in terms of top-N ranking of ground-truth com-
pounds (both selective and non-selective), dCPPP is very similar to dCPPP°. In the
second iteration, dCPPP at (o = 0.6, 5 = 0.2) is able to rank among top 5/10 more
compounds (i.e., 2.39/6.56 compounds, respectively) that are among top 5/10 in the
ground truth than dCPPP°, and the difference is very close to statistical significance
(p-value 9.18 x 1072/1.45 x 1072). Moreover, dCPPP* in iteration 2 also has better
performance in terms of ranking the top5/10 compounds from ground truth (i.e.,
2.40/6.59 compounds, respectively) than dCPPP° with statistical significance. The
optimal dCPPP* outperforms dCPPP at (o = 0.6, 5 = 0.2) in iteration 2 as well. Over-
all, the performance in iteration 2 is better than that of iteration 1, in term of both

top-5 and top-10 ranking of both selective and active compounds. Particularly, in
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the first iteration, both dCPPP at (« = 0.6, = 0.2) and dCPPP* do not outperform
dCPPP°. However, in the second iteration, they outperform dCPPP° with reasonable
significance. This indicates that dCPPP is able to improve the ranking at the top of

the ranking lists over iterations.

Table 3.6.: Top-N Performance on Compound Ranking (Bioassay Counts)

iter N method 0 1 2 3 4 5 6 7 8 9 10
dCPPP° 14 27 38 42 28 4 - - - - -

5 dCPPP(0.6,0.2) 13 29 42 44 24 4 - - - - -

1 dCPPP* 11 30 40 44 26 4 - - - - -
dCPPP° 0 O 1 3 11 26 34 33 29 15 2

10  4CPPP(0.6,0.2) 0 O 1 4 9 32 35 31 28 13 2
dCPPP* 0 0 1 5 9 26 38 34 28 14 2

dCPPP° 11 30 40 44 26 4 - - - - -

5 dCPPP(0.6,0.2) 11 27 42 44 27 4 - - - - -

9 dCPPP* 10 29 40 45 27 4 - - - - -

dCPPP° o o0 1 5 9 26 38 34 28 14 2
10 4cppPP(0.6,0.2) O 0O 1 3 11 22 36 36 29 14 2
dCPPP* o o 1 4 11 20 34 37 31 15 2

The column “N” has the numbers of compounds on top of the ranking results that are considered.
The column “method” has all the methods in comparison. The columns corresponding to number
0,1,---,k,---,10 represent the number of bioassays that retrain k& out of the top-N (N = 5, 10)
most active compounds in the ground truth in top-N compound rankings by the various methods,
respectively.

In Table 3.6, we compare the number of bioassays in which sufficient amount of
top-N compounds in the ground truth are retained still among top-N rankings by the
various methods. Note that here only the activity ranking is considered. Table 3.6
shows that in iteration 1, dCPPP° enables more bioassays to retain more true top-
N compounds. For example, 28/4 bioassays retain 4/5 of the top-5 most active
compounds in their top-5 rankings, respectively. Thus, cumulatively 32 bioassays
retain at least 4 of the 5 most active compounds in their top-5 rankings, compared
to 28 bioassays from dCPPP at (o = 0.6, = 0.2) and 30 bioassays from dCPPP*,
respectively. Similarly for top-10 rankings, dCPPP° enables 46 bioassays to retain at

least 8 compounds out of the 10 most active compounds, compared to 43 bioassays
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from dCPPP at (o« = 0.6, = 0.2) and 44 bioassays from dCPPP*, respectively. The
performance is expected, because dCPPP at (o« = 0.6, = 0.2) and dCPPP* push
selective compounds higher than they should be as if solely activity is considered, and
as a result lower some activity compounds from the top of the ranking lists. Even
though, the performance of dCPPP° and dCPPP are very comparable, indicating that
dCPPP is able to achieve the overall compound ranking structures similarly as dCPPP°.
Table 3.6 also shows that in the second iteration, dCPPP at (o = 0.6, 5 = 0.2) and
dCPPP* enable 31 bioassays to retain at least 4 out of 5 most active compounds among
top 5 rankings, and 45 and 48 bioassays top retain at least 8 out of 10 most active
compounds among top 10 rankings, respectively, which is better than dCPPP°. Note
that dCPPP° in iteration 2 is dCPPP* from iteration 1, and thus Table 3.6 shows that
in iteration 2, the performance of dCPPP in terms of retaining top active compounds
start to get better. This indicates that in the second iteration, dCPPP tends to fix the

altered ranking lists from the first iteration, similarly as indicated in Table 3.5.

Compound Selectivity Ranking

Table 3.7.: Top-N Performance on Selectivity Ranking (Compound Counts)

iter N dCPPP° dCPPP(0.6,0.2) dCPPP*
) 5 2.25 240 (1.47 x 10°%) 2.49 (3.76 x 10~ 17)
10 3.04 3.18 (9.14 x 107?) 3.19 (1.07 x 1071)
) 5 2.49 2.50 (3.93 x 1072) 2.52 (3.80 x 1073 )
10 3.19 3.21 (2.90 x 1072) 3.21 (4.98 x 1072 )

The column “N” has the numbers of compounds on top of the ranking results that are
considered. The columns “dCPPP°”, “dCPPP(0.6,0.2)” and “dCPPP*” have the number of
selective compounds that are ranked among top N by dCPPP°, by dCPPP at (o = 0.6, 5 = 0.2)
and by dCPPP*, respectively. The numbers in parentheses in “dCPPP(0.6,0.2)” and “dCPPP*”
columns are the p-values comparing the results of dCPPP and dCPPP* with those of dCPPP°,
respectively.

Table 3.7 presents the top-N (N = 5 and 10) performance of dCPPP compared
to dCPPP° in prioritizing selective compounds. The comparison is in terms of the

number of selective compounds that are ranked on top by dCPPP, regardless whether
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these selective compounds are ranked on top or not in the ground truth. Among
the top 5/10 of the ranking results from iteration 1, dCPPP at (o = 0.6,3 = 0.2)
consistently ranking more selective compounds (i.e., 2.40/3.18 selective compounds,
respectively) compared to dCPPP° (i.e., 2.25/3.04 selective compounds, respectively),
with statistical significance. Please note that these top ranked selective compounds
could be either among top N in the ground truth or below top N in the ground
truth. If each bioassay uses its own optimal (in terms of RSPI) a and 3 parameters,
dCPPP* also ranks more selective compounds (i.e., 2.49/3.19) than both dCPPP° with
statistical significance and dCPPP at (o = 0.6, 8 = 0.2). In the second iteration, dCPPP
at (« = 0.6, 8 = 0.2) also outperforms dCPPP° in ranking selective compounds among
top 5/10. Specifically, dCPPP at (a = 0.6, 8 = 0.2) is able to rank 2.50/3.21 selective
compounds in top 5/10 of the ranking list, while dCPPP° could rank 2.49/3.19 selective
compounds, and the difference is statistically significant (p-value 3.93 x 1072/2.90 x
1072). In addition, dCPPP* outperforms dCPPP° in iteration 2 as well and is able
to rank 2.52/3.21 selective compounds in top5/10 with statistical significance. Also,
dCPPP* outperforms dCPPP at (o = 0.6, f = 0.2) in ranking more selective compounds
in top 5/10. The results in Table 3.7 demonstrates that over the two iterations, dCPPP
is able to consistently push more selective compounds onto top.

Table 3.8 presents the number of bioassays that rank selective compounds on top.
In this comparison, dCPPP is significantly better than dCPPP°. For example, dCPPP
at (o« = 0.6, = 0.2) and dCPPP* enable 72 and 74 bioassays, respectively, to rank
at least 3 selective compounds among top-5 rankings in iteration 1, compared to 65
bioassays from dCPPP°. In terms of top 10 rankings, dCPPP at (o = 0.6,5 = 0.2)
and dCPPP* enable 32 and 32 bioassays, respectively, to rank at least 5 selective
compounds among top-10 rankings in iteration 1, compared to 28 bioassays from
dCPPP°. In the second iteration, dCPPP at (o = 0.6, 8 = 0.2) and dCPPP* enables even
more bioassays to rank more selective compounds. For example, for top-5 rankings,
dCPPP at (a = 0.6, 8 = 0.2) and dCPPP* enable 75 and 77 bioassays to rank at least

3 selective compounds among top-5 rankings, respectively, compared to 74 bioassays
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Table 3.8.: Top-N Performance on Selectivity Ranking (Bioassay Counts)

iter N method 0 1 2 3 4 5 6 7 8 9 10
dCPPP® 11 35 45 37 22 6 - - - - -

5 dCPPP(0.6,0.2) 6 31 45 46 19 7 - - - - -

X dCPPP* 4 28 49 44 21 9 - - - - -
dCPPP® 5 21 42 34 25 14 9 4 1 0 0

10 dcPPP(0.6,02) 3 18 40 38 24 15 10 5 2 0 O
dCPPP* 3 18 40 38 24 16 9 4 3 0 0

dCPPP® 4 28 49 44 21 9 - - - - -

5 dCPPP(0.6,0.2) 4 28 48 44 22 9 - - - - -

) dCPPP* 4 28 46 45 23 9 - - - - -
dCPPP® 3 18 40 38 24 16 9 4 3 0 0

10 dcPPP(0.6,02) 3 18 40 39 23 16 9 5 3 0 O
dCPPP* 3 17 40 38 23 16 10 5 2 0 0

The column “N” has the numbers of compounds on top of the ranking results that are consid-
ered. The column “method” has all the methods in comparison. The columns corresponding to
number 0,1,--- ,k,--- 10 represent the number of bioassays that rank k selective compounds
in top-N (N = 5, 10) compound rankings by the various methods, respectively.

from dCPPP°. Note that in iteration 2, dCPPP° is the dCPPP* from iteration 1. Thus,
compared to the best performance from iteration 1, dCPPP further improves selectivity
ranking among top 5 in iteration 2. Similar conclusions can be drawn for top-10

rankings.

Compound Selectivity Push

Table 3.9 presents the performance of dCPPP in pushing ground-truth top-N se-
lective compounds on top. The comparison is in terms of the number of selective
compounds that are ranked among top N in the ground truth and have also been
retained among top N by dCPPP. In the first iteration, among the average 1.98 se-
lective compounds among top 5 in the ground truth, dCPPP° is able to retain 1.38
of such selective compounds still among top 5, but dCPPP at (o = 0.6, = 0.2) is
able to retain 1.44 and dCPPP* is able to retain 1.49, both with statistical significance

compared to dCPPP°. In addition, among 1.01 selective compounds that are among
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Table 3.9.: Top-N Performance on Selectivity Push (Compound Counts)

iter N gt  dCPPP° dCPPP(0.6,0.2) dCPPP*
) 1-5  1.98 1.38 1.44(7.10 x 1073) 1.49(1.63 x 107°)
6-10  1.01 10.56  10.61(1.60 x 107*)  10.65(6.21 x 1078)

o -5 198 1.49 1.50(1.95 x 1071) 1.51(7.36 x 107%)

6-10 1.0l  10.65 10.65(4.92x 1071)  10.66(2.28 x 107?)

The column “N” has the numbers of compounds on top of the ranking results that are consid-
ered. The column “gt” has the average number of selective compounds in top-N compounds
in the ground truth. The columns “dCPPP°”, “dCPPP(0.6,0.2)” and “dCPPP*” have results for
dCPPP°, dCPPP at (a = 0.6, 8 = 0.2) and dCPPP*, respectively. The numbers in parentheses in
“dCPPP(0.6,0.2)” and “dCPPP*” columns are the p-values comparing the results of dCPPP and
dCPPP* with those of dCPPP°, respectively. The first row corresponds to the number of selective
compounds among top 5 in the ground truth that are still ranked in top 5 by the different
methods. The second row corresponds to the number of selective compounds that are among
top 10 to top 6 in the ground truth and ranked into top 5 (denoted by 1) by the different
methods.

top 10 to top 6 in the ground truth, dCPPP° is able to push on average 0.56 selective
compounds into its top-5 ranking compounds, while dCPPP at (o = 0.6, 5 = 0.2) is
able to push 0.61 and dCPPP* is able to push 0.65, both with statistical significance.

In the second iteration, among the 1.98 selective compounds among top 5 in the
ground truth, dCPPP at (a = 0.6, 5 = 0.2) and dCPPP* are able to retain 1.50 and 1.51
such selective compounds still among top 5, respectively, while dCPPP° could retain
1.49 such selective compounds. Among the 1.01 selective compounds that are ranked
in top 10 upto top 6 in the ground truth, dCPPP at (o = 0.6, 5 = 0.2) and dCPPP*
could push 0.65 and 0.66 such selective compounds into top 5 of their ranking lists,
while dCPPP° could push 0.65. The results in Table 3.9 demonstrate that dCPPP is able
to retain most of the selective compounds on top, and push lower ranked selective
compounds onto top. In addition, Table 3.9 shows that in the first iteration, in total
there are 2.14 (i.e., 1.49 + 0.65) selective compounds that are ranked on top 5 by
dCPPP*, and those 2.14 selective compounds are ranked among top 10 in the ground
truth. On the other hand, Table 3.7 shows that in the first iteration, dCPPP* ranks

2.49 (more than 2.14) selective compounds among top 5. This indicates that dCPPP*
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even pushes selective compounds that are ranked below top 10 in the ground truth

onto top 5.

Table 3.10.: Top-N Performance on Selectivity Push (Bioassay Counts)
iter N method (%) [0,20) [20,40) [40,60) [60,80) [80, 100) [100, 100] NA

dCPPP° 20 8 20 20 2 67 18
5 dCPPP(0.6,0.2) 18 5 18 22 2 72 18

. dCPPP* 13 5 19 20 3 77 18
dCPPP° 27 5 14 6 0 41 63

10 dCPPP(0.6,0.2) 20 6 14 6 0 A7 63
dCPPP* 16 5 15 7 0 49 63

dCPPP° 13 5 19 20 3 77 18

5 dCPPP(0.6,0.2) 12 5 18 22 2 78 18

) dCPPP* 12 419 21 2 79 18
dCPPP° 16 5 15 7 0 49 63

10 dCPPP(0.6,0.2) 16 5 15 7 0 50 63
dCPPP* 16 5 14 7 0 51 63

The column “N” has the numbers of compounds on top of the ranking results that are considered.
The column “method” has all the methods in comparison. The columns corresponding to number
(%) “[a,b)” represent the portion (in percentage) of selective compounds are retained or pushed.
The row blocks corresponding to “N=5" represents the number of bioassays which retain the cor-
responding portions of selective compounds among the top-5 compounds in the ground truth. The
row blocks corresponding to “N=110" represent the number of bioassays which push corresponding
portions of selective compounds from top-6 to top-10 active compounds in the ground truth into
top-5 rankings.

Table 3.10 compares the number of bioassays that retain a certain portion of
selective compounds that are among top-N active compounds in the ground truth
and still keep such selective compounds in top-/NV rankings. Table 3.10 shows that
from dCPPP at (o = 0.6, 5 = 0.2) and dCPPP*, more bioassays have a larger portion
of top-5 selective compounds (> 60%) still retained among top-5 rankings than from
dCPPP° after the first iteration, and more bioassays have their top-6 to top-10 selective
compounds pushed onto top-5 by dCPPP at (v = 0.6,3 = 0.2) and dCPPP*. In the
second iteration, even more bioassays have their top-5 selective compounds retained
still among top-5 by dCPPP at (o« = 0.6, = 0.2) and dCPPP*, and more top-6 to
top-10 selective compounds pushed up. This demonstrates that dCPPP is effective in

prioritizing selective compounds.
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3.7.5 Percentile Ranking Change

dCPPP*(1) ranking difference

dCPPP°(1) ranking difference

Fig. 3.7.: Ranking Difference among Selective Compounds in Iteration 1

dCPPP*(2) ranking difference

dCPPP°(2) ranking difference

Fig. 3.8.: Ranking Difference among Selective Compounds in Iteration 2

Figure 3.7 presents the difference of percentile rankings introduced by dCPPP(1)

among the training selective compounds. The difference of percentile rankings of
[—

i

k+

i

, where #¥" and 7~ are the estimated

a compound ¢; is defined as 7" — mBalLXf
percentile ranking of ¢; in bioassay By as a selective compound, and in bioassay B
as a non-selective compound, respectively. A positive/negative difference indicates
that ¢; is ranked higher/lower in By, as a selective compound than in any/some other

bioassays B; as a non-selective compound. Figure 3.7 shows that for dCPPP*(1), the
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majority of percentile ranking difference is positive (i.e., along y-axis, more data
points above the line z = 0). This indicates that dCPPP is able to push selective
compounds on top effectively. In addition, the average percentile ranking difference
from dCPPP*(1) is larger than that from dCPPP°(1) (i.e., more data points above the
line y = z in Figure 3.7). This indicates that dCPPP is able to further distinguish
selective compounds from non-selective compounds by pushing selective compounds
on top. Specifically, in dCPPP°(1), selective compounds are ranked 20 percentage
higher on average in the bioassays in which they are selective than in the bioassays
in which they are non-selective. In dCPPP*(1), selective compounds are ranked 30
percentage higher on average. The difference between the ranking percentile difference
in dCPPP*(1) and in dCPPP°(1) is statistically significant (p-value=2.18 x 107%°).
Figure 3.8 presents the difference of percentile rankings among the training se-
lective compounds introduced by dCPPP(2). In dCPPP*(2), selective compounds are
ranked on average 61 percentage higher in the bioassays in which they are selective
than in bioassays in which they are non-selective (i.e., along y-axis in Figure 3.8). The
difference between the ranking percentiles in dCPPP*(2) and in dCPPP°(2) is statisti-
cally significant (i.e., more data points above the line y = x; p-value=2.12 x 1073%).
The increase in the percentile ranking difference of training selective compounds in-
dicates that dCPPP is powerful to further push up the selective compounds and push
down the x-selective compounds in iteration 2. Also, the significant difference between
the ranking difference introduced by dCPPP°(2) and that introduced by dCPPP*(2)
shows that, after iteration 2, the selective compounds have been ranked significantly
higher in the bioassays in which they are selective and in other bioassays in which

the compounds are non-selective.

3.7.6 Push Power Change

Figure 3.9 and Figure 3.10 present the change of push-up/push-down powers (i.e.,

g in Equation 3.6 and h in Equation 3.10) on the training selective compounds between
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2.50

2.00

g in iteration 2

1.50

1.00 S
1.00 1.50 2.00 2.50

g in iteration 1

Fig. 3.9.: Push-up Weight Change among Selective Compounds

2.50

h in iteration 2

1.00 1.50 2.00 2.50

h in iteration 1

Fig. 3.10.: Push-down Weight Change among x-Selective Compounds
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the two iterations, respectively. The average push-up power in iteration 1 and 2 is
g1 = 1.16 and g, = 1.09, respectively. The average push-down power in iteration 1 and
2 is hy = 1.34 and hy, = 1.27, respectively. The difference between the average push-
up powers in iteration 1 and the average push-up power in iteration 2 is statistically
significant with p-value 2.47 x 107322, The difference between the average push-down
powers is also significant with p-value 2.20 x 107193, The decrease of the push powers
in iteration 2 indicates that when the selective compounds are pushed higher after
iteration 1, the ranking difference of selective compounds in the bioassay in which
they are selective and in other bioassays in which they are non-selective is increased

(Equation 3.6 and 3.10).

3.8 Discussions
3.8.1 Push Relation Among Bioassays

Figure 3.11 presents a subset of push relations among all the bioassays in the
first iteration of dCPPP as a weighted directed network. Each node in the network
represents one bioassay. Since each bioassay has one unique target, the gene name
of the target is used to represent each bioassay on the corresponding node. An edge
from bioassay B; to bioassay By, represents that there is a compound shared by B; and
By, and the compound in By, is pushed with a power determined by the its ranking
difference in By and By (i.e., B; helps to push the compound in By). A red edge from
By to By represents that the corresponding pushed (up) compound is selective in By.
A blue edge from B, to By, represents that the corresponding pushed (down) compound
is x-selective in By. The weight (width) of an edge represents the corresponding push-
up/down power. Figure 3.11 shows that there are many edges among genes of a same
family (e.g., PIK3CA, PIK3CB, PIK3CD, PIK3CG; SSTR1, SSTR2, SSTR3, SSTR4,
SSTR5). This well conforms to the Chemogenomics principle [41; 42| that targets of
a same family tend to bind to similar compounds. The full set of relations is available

in Figure S1 in the Supporting Information.
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Fig. 3.11.: Push Relation among Bioassays

The weighted directed networks are constructed based on push-up/down powers
that are collectively determined by multiple compound prioritization models. Com-
pared to conventional compound-sharing based networks [43; 44| that are typically
undirected and /or unweighted, such model-based weighted directed networks may ex-
hibit interesting signals that could inform novel drug development approaches. Fur-
ther research may be oriented along this direction via better exploring the structures

of the weighted directed networks.

3.8.2 Bioassay-Specific Compound Features

In dCPPP, the vector of Tanimoto similarities of ¢; compared to other training

compounds in a bioassay B is used as the compound features for ¢; in Bj. There-
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fore, the compound features are task specific. This compound feature representation
follows the idea of the very recent trend of learning task-specific compound features
using deep learning [45; 46; 47| for various compound prediction problems. Thus, we

will explore better compound feature learning for compound prioritization purposes.

3.8.3 Differential Promiscuous Compound Prioritization

The x-selective compounds that are pushed down in dCPPP represent a certain
type of promiscuous compounds, which are the promiscuous compounds that show
multi-fold difference in their activities against an off-target and the target of interest
(based on the definition of “selectivity” as in Section 3.3). This type of promiscuous
compounds is much less preferable for the target of interest, compared to the other
promiscuous compounds, which are active against multiple targets, but not very dif-
ferentiably. In this work, we focus on pushing x-selective compounds down but not
explicitly other promiscuous compounds. However, other promiscuous compounds
should also be properly considered for pushing down as well. We will tackle this

aspect in the future work.

Supporting Information Availability

Supporting Information Available: Assay information, push relation and addi-
tional experimental results are available in the Supporting Information. Detailed
method description and results can be found at https://cs.iupui.edu/"1liujunf/

projects/selRank_2017/.
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4. DRUG SELECTION VIA JOINT PUSH AND
LEARNING TO RANK

4.1 Introduction

Selecting the right drugs for the right patients is a primary goal of precision
medicine [1]. An appealing option for precision cancer drug selection is via the pan-
cancer scheme [2] that examines various cancer types together. The landscape of can-
cer genomics reveals that various cancer types share driving mutagenesis mechanisms
and corresponding molecular signaling pathways in several core cellular processes [3].
This finding has motivated the most recent clinical trials (e.g., the Molecular Analysis
for Therapy Choice Trial at National Cancer Institute*) to identify common targets
for patients of various cancer types and to prescribe same drug therapy to such pa-
tients. Such pan-cancer scheme is also well supported by the strong pan-cancer muta-
tions [4] and copy number variation [5] patterns observed from The Cancer Genomics
Atlas! project. The above pan-cancer evidence from theories and practices lays the
foundation for joint analysis of multiple cancer cell lines and their drug responses to
prioritize and select sensitive cancer drugs.

Another appealing option for precision cancer drug selection is via the popular off-
label drug use [6] (i.e., the use of drugs for unapproved therapeutic indications [7]).
This is due to the fact that some aggressive cancer types have very limited existing
therapeutic options, while conventional drug development for those cancers, and also
in general, has been extremely time-consuming, costly and risky [8]. However, a key
challenge for off-label drug use is the lack of knowledge base of preclinical and clinical

evidence, hence, the guidance for drug selection in practice [9].

*https://www.cancer.gov/about-cancer/treatment /clinical-trials /nci-supported /nci-match
Thttps://cancergenome.nih.gov/
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In this manuscript, we present a new computational cancer drug selection method
— joint push and LEarning TO Rank with genomics regularization (pLETORg). In
pLETORg, we formulate the problem of drug selection based on cell line responses as a
learning-to-rank [10] problem, that is, we aim to produce accurate drug orderings (in
terms of drug sensitivity) in each cell line via learning, and thus prioritize sensitive
drugs in each cell line. This corresponds to the application scenario in which drugs
need to be prioritized and selected to treat a given cell line/patient. Drug sensitivity
here represents the capacity of drugs for reduction in cancer cell proliferation. Cell
line responses to drugs reflect drug sensitivities on the cell lines, and thus, we use the
concepts of drug sensitivity and cell line response in this manuscript exchangeably.

To induce correct ordering of drugs in each cell line in terms of drug sensitivity, for
each involved drug and cell line, in pLETORg, we learn a latent vector and score drugs
in each cell line using drug latent vectors and the corresponding cell line latent vector.
We learn such latent vectors through explicitly enforcing and optimizing that, in the
drug ranking list of each cell line, the sensitive drugs are pushed above insensitive
drugs, and meanwhile the ranking orders among sensitive drugs are correct, where the
ranking position of a drug in a cell line is determined by the drug latent vector and
cell line latent vector. We simultaneously learn from all the cell lines and their drug
ranking structures. In this way, the structural information of all the cell lines can be
transferred across and leveraged during the learning process. We also use genomics
information on cell lines to regularize the latent vectors in learning to rank. Fig. 4.1
demonstrates the overall scheme of the pLETORg method.

The new pLETORg is significantly different from the existing computational drug
selection methods. Current computational efforts for precision cancer drug selec-
tion [11] are primarily focused on using regression methods (e.g., random forests [12],
kernel based methods [13], ridge regression [14], deep neural networks [15]) to predict
drug sensitivities (e.g., in Gl ¥, IC50 %) numerically, and selecting drugs with optimal

sensitivities in each cell line [16]|. For example, in Menden et al. [17], cell line features

thttps://dtp.cancer.gov /databases_ tools/docs/compare/compare methodology.htm
Shttps://www.ncbi.nlm.nih.gov/books/NBK91994 /
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Fig. 4.1.: pLETORg Scheme Overview

(e.g., sequence variation, copy number variation) and drug features (e.g., physico-
chemical properties) are jointly used to train a neural network that predicts drug
sensitivities in 1C5y values. Another focus of the existing methods is on effectively
using genomics information on cell lines and features on drugs to improve regres-
sion [13; 18; 19]. For example, in Ammad-ud-din et al. [20], a kernel is constructed
on each type of drug and cell line features to measure their respective similarities,
and drug sensitivity is predicted from the combination of projected drug kernels and
cell line kernels.

The existing regression based methods for drug selection may suffer from the fact
that the regression accuracy is largely affected by insensitive drugs, and therefore,
accurate drug sensitivity regression does not necessarily lead to accurate drug selec-
tion (prioritization). This is because in regression models, in order to achieve small
regression errors, the majority of drug response values in a cell line needs to be fit
well. However, when insensitive drugs constitute the majority in each cell line, which

is becoming common as the advanced technologies are enabling screenings over large
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collections of small molecules (e.g., in the Library of Integrated Network-Based Cellu-
lar Signatures (LINCS) ¥), it is very likely that the regression sacrifices its accuracies
on a very few but sensitive drugs in order to achieve better accuracies on the majority
insensitive drugs, and thus smaller total errors on all drugs overall. This situation is
even more likely when the cell line response values on sensitive drugs follow a very
different distribution, and thus appear like outliers [21], than that from insensitive
drugs, which is also very often the case. Fig. 4.2 presents a typical distribution of cell
line (LS123 from Cancer Therapeutics Response Portal (CTRP v2) II) responses to
drugs. In Fig. 4.2, lower cell line response scores indicate higher drug sensitivities. It
is clear in Fig. 4.2 that top most sensitive drugs (in red in the figure) have sensitivity
values of a different distribution than the rest. When cell line responses on sensitive
drugs cannot be accurately predicted by regression models, it will further lead to

imprecise drug selection or prioritization (e.g., sensitive drugs may be predicted as

insensitive).
18.0 3
% —~
3
S
2120 |
= -
o o
= sensitive drugs x
g 00 X insensitive drugs x
- 0 100 200 300 400

drug index

Fig. 4.2.: Exemplar Cell Line Response Score Distribution

Instead, ranking methods represent a more natural and effective alternative so
as to directly prioritize and select drugs. In order to enable drug selection, in the
end, a sorted/ranking order of drugs needs to be in place. Accurate predicted cell

line response values on drugs can serve to sort/rank drugs in order. However, any

Yhttp://www.lincsproject.org/
Ihttps:/ /portals.broadinstitute.org/ctrp/
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other scores can also serve the purpose as long as they produce desired drug orders.
This provides the opportunity for learning-to-rank methods for drug selection, which
focus on learning the drug ranking structures directly (via using certain scores to sort
drugs). Actually, regression based drug selection corresponds to point-wise learning to
rank [10; 22; 23|, which has been demonstrated [24] to perform suboptimally compared
to pairwise [25] and listwise ranking methods [26].

Detailed literature review on learning to rank is available in Section 4.2. To the
best of our knowledge, this is the first work in which drug selection is tackled via
learning to rank.

The rest of the manuscript is organized as follows. Section 4.2 presents the lit-
erature review on learning-to-rank methods. Section 4.3 presents the new pLETORg
method. Section 4.4 presents the materials used in experiments. Section 4.5 presents

the experimental results. Section 4.6 presents the conclusions.

4.2 Literature Review on Learning to Rank

Learning to Rank (LETOR) [22] focuses on developing machine learning methods
and models that can produce accurate rankings of interested instances, rather than
using pre-defined scoring functions to sort the instances. LETOR is the key enabling
technique in information retrieval [23]. Existing LETOR methods fall into three cat-
egories: 1). pointwise methods [24], which learn a score on each individual instance
that will be used to sort/rank all the instances; 2). pairwise methods [25], which
optimize pairwise ranking orders among all instances to induce good ranking orders
among the instances; and 3) listwise methods [26], which model the full combinatorial
structures of ranking lists. It has been demonstrated [24| that pairwise and listwise
ranking methods outperform pointwise methods in general. This is because in pair-
wise and listwise methods, the ordering structures among instances are leveraged in
learning, whereas in pointwise methods, no ordering information is used. Moreover,

listwise methods are more computationally challenging than the others, due to the
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combinatorial nature of ranking lists as a whole. Thus, pairwise methods are the
choice in many ranking problems, given the trade-off between ranking performance
and computational demands.

The idea of using LETOR approaches to prioritize compounds has also drawn
some recent attention |27; 28; 29|. For example, Agarwal et al. |30] developed bipartite
ranking [31] to rank chemical structures for Structure-Activity-Relationship (SAR)
modeling such that active compounds and inactive compounds are well separated in
the ranking lists. Liu and Ning [29] developed a ranking method with bi-directional
powered push strategy to prioritize selective compounds from multiple bioassays.
However, LETOR has not been widely used in prioritizing drugs in computational
medicine domain.

In LETOR, a particular interest is to improve the performance on the top of the
ranking lists [32; 33|, that is, instead of optimizing the entire ranking structures, only
the top of the ranking lists will be optimized (i.e., to rank the most relevant instances
on top), while the rest of the ranking lists, particularly the bottom of the ranking
lists, is of little interest. An effective technique to enable good ranking performance
on top in LETOR is via push [27; 34; 35]. The key idea is to explicitly push relevant
instances on top during optimization. Various optimization algorithms are developed

to deal with the non-trivial objective functions when push is involved [25; 36].

4.3 Methods

We propose the joint push and LEarning TO Rank with genomics regularization
(pLETORg) for drug prioritization and selection. The pLETORg method learns and uses
latent vectors of drugs and cell lines to score each drug in a cell line, and ranks the
drugs based on their scores (Section 4.3.1). During the learning process, pLETORg
explicitly pushes the sensitive drugs on top of the ranking lists that are produced
by the prospective latent vectors (Section 4.3.2), and optimizes the ranking orders

among sensitive drugs (Section 4.3.3) simultaneously. In addition, pLETORg uses ge-
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nomics information on cell lines to constrain cell line latent vectors (Section 4.3.4).
The following sections describe pLETORg in detail. The supplementary materials are

available online**.

Table 4.1.: Notations

notation meaning

Cp cell line p

di drug i

dt/d a sensitive/insensitive drug in a cell line
Cy/Cp the set of sensitive/insensitive drugs in C,
n;/n;, the size of C;/C;7

u,/v; latent vector for cell line Cp,/drug d;

m/n the total number of cell lines/drugs

Table 4.1 presents the key notations used in the manuscript. In this manuscript,
drugs are indexed by ¢ and 7, and cell lines are indexed by p and q. We use d"/d~
to indicate sensitive/insensitive drugs (sensitivity labeling will be discussed later in
Section 4.4.1) in a certain cell line, for example, dj € C, or d; € C, indicates that

drug d; is sensitive in cell line C,. Cell line is neglected when no ambiguity arises.

4.3.1 Drug Scoring

We model that the ranking of drugs in terms of their sensitivities in a cell line
is determined by their latent scores in the cell line. The latent score of drug d; in
cell line C,, denoted as f,(d;), is estimated as the dot product of ¢;’s latent vector

v; € R and ¢,’s latent vector u, € R™!, where [ is the latent dimension, that is,

foldi) = f(dis Cp) = i, (4.1)

where f(d,C) is the dot-product scoring function, and the latent vectors u, and v;

will be learned. Then all the drugs are sorted based on their scores in C,. The most

**http://cs.iupui.edu/%7Eliujunf/projects/ CCLERank /
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sensitive drugs in a cell line will have the highest scores and will be ranked higher
than insensitive drugs. Thus, drug selection in pLETORg is to identify optimal drug
and cell line latent vectors that together produce preferable cell line-specific drug
scores and rankings. Note that in pLETORg, we look for scores f,(d;) as long as they
can produce correct drug rankings, but these scores are not necessarily identical to
drug sensitivity values (e.g., shifted drug sensitivity values can also produce perfect

drug rankings).

4.3.2 Pushing up Sensitive Drugs

To enforce the high rank of sensitive drugs, we leverage the idea of ranking with
push [35]. The key idea is to quantitatively measure the ranking positions of drugs,
and look for ranking models that can optimize such quantitative measurement so as
to rank sensitive drugs high and insensitive drugs low. In pLETORg, we use the height
of an insensitive drug d; in C,, denoted as hs(d;,C,), to measure its ranking position

in C, [35] as follows,

hidi Cp) = ) Wfpldy) < foldy), (4.2)

d;€Cp

where C, is the set of sensitive drugs in cell line Cp, f is the drug scoring function
(Equation 4.1), f,(d;) and f,(d;) are the scores of d; and d; in C,, respectively,
and [(z) is the indicator function (I(x) = 1 if = is true, otherwise 0). Essentially,
h¢(d;,Cp) is the number of sensitive drugs that are ranked below the insensitive drug
d; in cell line C, by the scoring function f.

To push sensitive drugs higher in a cell line, it is to minimize the total height of all

insensitive drugs in that cell line (i.e., minimize the total number of sensitive drugs
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that are ranked below insensitive drugs). Thus, for all the cell lines, it is to minimize

their total heights, denoted as P;, that is,

m

1

T _ _

Pf - Z ntn- hf(dz' an)y (43)
p=1 PP gec,

where m is the number of cell lines, and n, and n, are the numbers of sensitive and

insensitive drugs in cell line C,. The normalization by n; and n, is to eliminate the

effects from different cell line sizes.

4.3.3 Ranking among Sensitive Drugs

In addition to pushing sensitive drugs on top of insensitive drugs, we also consider
the ranking orders among sensitive drugs in order to enable fine-grained prioritization
among sensitive drugs. Specifically, we use d; =g d; to represent that d; is ranked
higher than ¢; in the relation R. We use concordance index (CI) [37] to measure drug

ranking structures compared to the ground truth, which is defined as follows,

CI({dih.c. ) = mzﬂ(d - d), (1.4)
where {d;} is the set of drugs in cell line C, {d; >¢ d;} is the set of ordered pairs of
drugs in cell line C (d; >¢ d; represents that d; is more sensitive, and thus ranked
higher, than d; in C), f is the scoring function (Equation 4.1) that produces an
estimated drug ranking, d; > d; represents that ¢; is ranked higher than d4; by f,
and I is the indicator function. Essentially, CI measures the ratio of correctly ordered
drug pairs by f among all possible pairs. Higher CI values indicate better ranking
structures.

To promote correct ranking orders among sensitive drugs in all the cell lines, we

minimize the objective O7, defined as the sum of 1 — CI values (i.e., the ratio of
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mis-ordered drug pairs among all pairs) over the sensitive drugs of all the cell lines,

as follows,
0; =Y [L—c1({d;}.Cp. f)]
pnjl 1 (4.5)
=y I(d <y dJ).
+ + Z i fa;
= e, i} dy-cpd;

4.3.4 Overall Optimization Problem

Overall, we seek the cell line latent vectors and drug latent vectors that will be
used in drug scoring function f (Equation 4.1) such that for each cell line, the sensitive
drugs will be ranked on top and in right orders using the latent vectors. In pLETORg,

such latent vectors are learned by solving the following optimization problem:

. o 1 p v
I(I]l,l‘;l ﬁf = (1 — CY)Pf + OéO;; + §Ruv + §Rcsim7 (46)

where Ly is the overall loss function; P; and Oy are defined in Equation 4.3 and
Equation 4.5, respectively; U = [uy,ug, -+ ,u,] and V = [vq, vy, -+ ,v,] are the la-
tent vector matrices for cell lines and drugs, respectively (U € R>*™ V € R,
where [ is the latent dimension); « (a € [0, 1]) is a weighting parameter to control the
contribution from push (i.e., P} ) and ranking (i.e., O;); 8 and v are regularization
parameters (3 > 0, v > 0) on the two regularizers R,, and R, respectively.

In Problem 4.6, R,, is a regularizer on U and V to prevent overfitting, defined as

1 1
Ruy = —||UNI7+ ~IIVIIE, (4.7)

UV -
m

where || X || is the Frobenius norm of matrix X. R is a regularizer on cell lines to

constrain cell line latent vectors, defined as

1 m m
Resim = szwquup—uqH%, (4.8)
p=1 ¢=1
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where wp, is the similarity between C, and (C, that is calculated using genomics
information of the cell lines (e.g., gene expression information). The underlying as-
sumption is that if two cell lines have similar patterns in their genomics data (i.e.,
large wy,), they will be similar in their cell line response response patterns, and thus
similar latent vectors [16].

The Problem 4.6 involves an indicator function (in Equation 4.2, 4.4), which is
not continuous or smooth. Thus, we use the logistic function as its surrogate [34],

that is,
[(z <y) =~ log[l + exp(—(z —y))] = —logo(z —y), (4.9)

where o(x) is a sigmoid function, that is,

1
1 +exp(—a)

o(z)

The optimization algorithm for pLETORg optimization is presented in Algorithm 2.
We use alternating minimization with gradient descent (details in Section S2 in sup-
plementary materials) to solve the optimization Problem 4.6.

Since the number of drugs pairs is quadratically larger than the number of drugs,
it could be computationally expensive to use all the drug pairs during training. To
solve this issue, we develop a sampling scheme. During each iteration of training, we
use all the sensitive drugs in each cell line but randomly sample a same number of
insensitive drugs from each respective cell line. This process is repeated for a number
of times and then the average gradient is used to update U and V. This sampling

scheme will significantly speed up the optimization process.
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Algorithm 2: Alternating Optimization for pLETORg
Input: cell lines {C} with drug sensitivities;
cell line similarity matrix W € R™*"™;
latent dimension [;
weighting parameter «;
regularization parameters § and ~;
Output: U and V
Ensure: a« € [0,1],3>0,v>0
U < a random [ X m matrix
V < arandom [ X n matrix
while not converged do
fix V' and solve for U using gradient descent (Equation S1, S2 in Section S2)

in supplementary materials

fix U and solve for V' using gradient descent (Equation S3, S4 in Section S2)

in supplementary materials

end
return U and V

4.4 Materials

4.4.1 Dataset and Experimental Protocol

Table 4.2.: Dataset Description

m n #genes #AUCs #mAUCs #d/C #C/d
821 545 20,068 357,052 90,393 435 655

The columns of “m”; “n” and “#genes” have the number of cell lines, drugs and genes in the
dataset, respectively. The columns of “#4AUCs” and “#mAUCs” have the total number of
available response values and missing response values, respectively. The column of “#d/C”
has the average number of available drug response values per cell line. The column of “#C/d”
has the average number of cell lines that have response values for each drug.

We use the cell line data and drug sensitivity data from Cancer Cell Line Ency-
clopedia (CCLE) ' and Cancer Therapeutics Response Portal (CTRP v2) # (both
accessed on 10/14/2016), respectively. CTRP provides the cell line responses to differ-

ent drugs. The response is measured using area-under-concentration-response curve

TThttps:/ /portals.broadinstitute.org/ccle /home
Hhttps://portals.broadinstitute.org/ctrp/
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(AUC) sensitivity scores [38]|. Lower response (AUC) scores indicate higher drug sen-
sitivities. CCLE provides the expression information over a set of genes for each of
the cell lines. Larger expression values indicate higher gene expression levels. CCLE
also provides other omics data for the cell lines (e.g., copy number variations). In this
manuscript, we only use gene expression information, as it is demonstrated as the
most pertinent to cell line response [16]. The use of other omics data will be explored
in the future research. This dataset has large numbers of both cell lines and drugs.
Table 4.2 presents the description of the dataset used in the experiments. Note that
in the dataset, about 20% of the drug sensitivity values are missing. For the drugs
which do not have response values in a cell line, we do not use the drugs in learning

the corresponding cell line latent vector.

Experimental Setting

We had two experimental settings for two different types of experiments.

cell lines

di d2 d3 da ds de dr ds do dio
drugs

[] training drugs [ ] testing drugs

Fig. 4.3.: Data Split for 5-Fold Cross Validation

N-Fold Cross Validation In the first setting, we split drug sensitivity data for
each cell line into a training and a testing set, and conduct 5-fold cross validation to
evaluate model performance. Fig. 4.3 demonstrates the training-testing splits. For
each cell line, its drug sensitivity data are randomly split into 5 folds. One of the 5
folds is used as testing set and the other four folds are used for training. The is done

5 times, with each of the 5 folds as the testing data in each time. The final results are
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the average over the 5 folds. This experimental setting corresponds to the application
scenario in which additional drugs (i.e., the testing data) need to be selected for each
cell line/patient.

During the data split, we ensure that for each of the drugs, there is at least one
cell line in the training set that has response information for that drug. This is to
avoid the situation in which drugs in the testing set do not have information during
training, or the use scenario in which brand-new compounds need to be selected for
further testing. The latter will be studied in future research. We also ensure that each
cell line has drug sensitivities in the training set to avoid the situation of brand-new

cell lines. This situation will be studied in the second experimental setting.

w

QOO
= ot

o]

cell lines

[a

di do d3 da ds de dr ds dy dio
drugs

[Jtraining cell lines [ ] testing cell lines

Fig. 4.4.: Data Split for Testing New Cell Lines

Leave-Out Validation We also conduct experiments in a different setting as indi-
cated in Fig. 4.4, that is, we hold out entire cell lines into the testing data so that in
training data, the held-out cell lines have no drug response information at all. This
corresponds to the use scenario to select sensitive drugs for new cell line/new patients.

Details on how to hold out cell lines will be discussed later in Section 4.5.3.

Sensitivity Labeling Scheme

Labeling Scheme for N-Fold Cross Validation In the 5-fold setting (Fig. 4.3),
for each cell line, we use a certain percentile 0 (e.g., §=5) of all its response values in

the training set as a threshold to determine drug sensitivity in that cell line. Thus,
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the sensitivity threshold is cell line specific. It is only selected from the training data
of respective cell lines (i.e., testing data are not used to determine the threshold as
they are considered as unknown during training). Drugs in both the training set and
testing set are then labeled as sensitive in the respective cell line if the cell line has
lower response values on the drugs than the threshold (lower AUC scores indicate
higher sensitivity), otherwise, the drugs are labeled as insensitive. The reason why a
cell-line-specific percentile threshold is used for sensitivity labeling is that there lacks
a pre-defined threshold of sensitivity scores for each of the cell lines to determine
sensitivity labels. Meanwhile, given the heterogeneity of cell lines, we cannot apply
the same threshold for different cell lines. The idea of using sensitivity score percentile
as a threshold is very similar to that in Speyer et al. [21], in which the outliers with

low sensitivity scores are labeled as sensitive.

Labeling Scheme for Testing New Cell Lines In the second setting with new
cell lines (Fig. 4.4), since the new cell lines have no drug response information in
training, we use a percentile threshold from the testing data (i.e., the new cell lines;

the ground truth) to label sensitivities of the drugs in the new cell lines.

4.4.2 Baseline Method

We use a strong baseline method, the Bayesian Multi-Task Multi-Kernel Learning
(BMTMKL) method [16], which is the winning method for DREAM 7 challenge %, for
comparison. BMTMKL was originally developed to rank cell lines with respect to a drug
based on their responses to the drug (i.e., the DREAM 7 problem). In BMTMKL, cell
line ranking for each drug is considered a task. All the cell line rankings are learned
simultaneously in a multi-task learning [39] framework. Multiple kernels [40] (positive
semi-definite similarity matrices) are constructed from multiple types of omics data

for cell lines to quantify their similarities. The multi-task and multi-kernel learning

$http://dreamchallenges.org/project /dream-7-nci-dream-drug-sensitivity-prediction-challenge /

www.manaraa.com



141

is conducted within a kernelized regression with Bayesian inference for parameter
estimation.

Note that the drug ranking problem we are tackling in this manuscript is a different
problem compared to the cell line ranking problem that BMTMKL is designed to tackle.
The cell line ranking problem in DREAM 7 corresponds to the application scenario
in which cell lines/patients need to be selected to test a given drug, for example,
in a clinical trial, whereas the drug ranking problem corresponds to the application
scenario in which drugs need to be selected to treat a given cell line/patient. Even
though, BMTMKL can still be used on the drug ranking problem by switching the
roles of “drugs” and “cell lines”. Moreover, BUTMKL predicts drug response values via
regressions and uses the values for cell line ranking. Thus, BMTMKL is a regression
method, and the predicted values can also be used for drug ranking. To the best
of our knowledge, there is no existing work on drug selection using learning-to-rank

methods as a baseline to compare pLETORg with.

4.4.3 FEvaluation Metrics

We first introduce the evaluation metrics that are used in most of the experiments.
Other metrics that are used in specific experiments will be introduced later when they
are applied. The first metric that we use to evaluate the performance of BUTMKL and
pLETORg is the average-precision at k (APQF) [10]. It is defined as the average of
precisions that are calculated at each ranking position of sensitive drugs that are

ranked among top k in a ranking list, that is,

k
Z;Prec({d?, ce,d=1h L f) - Wdz e C)
AP@k({di},C, f) = =

) , (4.10)
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where d> is the drug that is ranked at position j by f, I[(d? € C") checks whether

d? is sensitive in C in the ground truth, and Prec is defined as

Prec({d ,d=}.CTL f) = Zﬂ(d? ec)/j (4.11)

that is, it is calculated as the ratio of sensitive drugs among top-j ranked drugs. Thus,
APQF considers the ranking positions of sensitive drugs that are ranked among top k
of a ranking list. It is a popular metric to evaluate LETOR methods. Higher APQFk
values indicate that the sensitive drugs are ranked higher on average.

We define a second metric average-hit at k (AHQFk) as the average number of

sensitive drugs that are ranked among top k of a ranking list, that is,
k
AHOk({d:},C, f) =) (d+ € C7) (4.12)
7j=1

Higher AHQE values indicate that more sensitive drugs are ranked among top k.
We also use CI as defined in Equation 4.4 to evaluate the ranking structures
among only sensitive drugs. In this case, we denote CI specifically as sCI (i.e., CI
for sensitive drugs), and thus by default, CI evaluates the entire ranking structures
of both sensitive and insensitive drugs, and sCI is only for sensitive drugs. Note
that sCI (CI) and APQk measure different aspects of a ranking list. The sCI (CI)
metric measures whether the ordering structure of a ranking list is close to its ground
truth, while AP@Qk measures whether the relevant instances (i.e., sensitive drugs in
this manuscript) are ranked on top. A high APQk does not necessarily indicate the
ordering among the top-ranked drugs is correct. Similarly, a high sCI (CI) does not
necessarily lead to that the most sensitive drugs being ranked on top, particularly
when there are many insensitive drugs in the list. In this manuscript, both the drug
sensitivity and the ordering of sensitive drugs are of our concern. That is, we would
like to select sensitive drugs, and meanwhile if there are multiple such drugs, we would

like to have a correct ordering over such drugs.
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4.4.4 Gene Selection and Cell Line Similarities

We use gene expression information to measure cell line similarities (i.e., wpy,
as in Equation 4.8) and regularize our ranking models (i.e., wy,|u, — w3 as in
Equation 4.8). It is well accepted that not all the genes are informative to cell line
response to drugs [16], and thus we use ¢; regularized linear regression to conduct
feature selection over gene expression data to select informative genes with respect
to each drug. It is well known that the ¢, regularization will promote sparsity in the
solution [41], in which the non-zero values will indicate useful independent variables
(in our case, genes). To select informative genes, the gene expression values over
all the cell lines are considered as independent variables and the response values on
each drug from all the cell lines are considered as dependent variables. If a cell
line has no response value on a drug, the gene expression information of that cell
line is not used. A linear least-squares regression with ¢; and ¢, regularization (i.e.,
elastic net) is applied over these variables so as to select informative genes for each
drug. The regularization parameters over the /; regularizer and the ¢, regularizer are
identified via regularization path [42]. Fig. 4.5 demonstrates the regression method
for gene selection. The union of all the selected genes for all the drugs will be used
to calculate cell line similarities. In the end, 1,203 genes are selected. The list of the
selected genes is available Section S3 in the supplementary materials. We use cosine
similarity function (cos) and radial basis function (rbf) over the selected genes (these
genes are considered as cell line features) to calculate the similarities between cell

lines.

drug d; genes
n n Z
o) <) =
g A= 80
— pr— — >< 5]
e e -
5}
o [\ &
)
&0
drug response gene expressions

Fig. 4.5.: Regression for Gene Selection
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4.5 Experimental Results
4.5.1 Ranking New Drugs

We first compare the performance of BMTMKL and pLETORg on ranking new drugs
in each cell line (i.e., ranking testing drugs among themselves in each cell line). The
experiments follow the protocol as indicated in Fig. 4.3. Note that notion of “new
drugs” is with respect to each cell line, and a new drug in a cell line could be known
in a different cell line.

We use 2 percentile (i.e., #=2) and 5 percentile (i.e., =5) as discussed in Sec-
tion 4.4.1 to label sensitivity. Although both BMTMKL and pLETORg do not rely on
specific labeling schemes, the small percentiles make the drug selection problem real-
istic. This is because in real practice, only the top few most sensitive drugs will be
of great interest. However, given that the sensitive drugs are few, the drug selection
problem is very non-trivial.

For both BMTMKL and pLETORg, we conduct a grid search for each of their param-
eters, and present the results that correspond to the best parameter combinations.
The full set of experimental results over all parameters is available in Table S2 and

S3 in the supplementary materials. Table 4.3 presents the overall performance.
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Overall Comparison

When 2 percentile of the response values (i.e., §=2) in training data is used as the
sensitivity threshold, pLETORg achieves its best AP@5 value 0.783, and it is 5.81%
higher than the best APQ5 value 0.740 of BMTMKL (p-value=3.096e-26). In terms of
AP@10, pLETORg achieves its best value 0.758, and it is 6.61% higher than 0.711 of
BMTMKL (p-value=9.628e-37). Meanwhile, pLETORg achieves higher AHQ5 and AH@10
compared to those of BUTMKL (1.856 vs 1.702, p-value=5.589%-51; 2.159 vs 2.072,
p-value=1.033e-28). In particular, pLETORg achieves its best APQk and AHQFE values
when a=0.0, that is, when the push term P} in Problem 4.6 is the only objective to
optimize. The results demonstrate that pLETORg is strong in pushing more sensitive
drugs on top of ranking lists and thus better prioritizes sensitive drugs for drug
selection. On the contrary, BUTMKL focuses on accurately predicting the response
value of each drug in each cell line. However, accurate point-wise response prediction
does not guarantee that the most sensitive drugs are promoted onto the top of ranking
lists in BMTMKL.

On the other hand, pLETORg achieves an sCI value 0.639 when it achieves its best
APQFE values (i.e., when [=10, a=0.0, =0.1 and y=100.0 for pLETORg). Compared to
the sCI value 0.646 of BMTMKL when BMTMKL achieves its best APQFE values, pLETORg
does not outperform BMTMKL on sCI. However, the difference is not significant (-
1.08% increase; p-value=2.803e-1). Note that when a=0.0, the ranking orders among
sensitive drugs are not explicitly optimized in Problem 4.6. Even though, pLETORg
is still able to produce the ranking orders that are very competitive to those from
BMTMKL. This may be due to that during pushing and optimizing sensitive drug orders
on top, pLETORg is able to learn drug latent vectors that can capture the underlying
reasons for the orderings among sensitive and insensitive drugs, and reproduce the
orderings among sensitive drugs.

In addition, pLETORg achieves a CI value 0.774 together with its best APQFk values,
but BMTMKL achieves a CI value 0.812 with its best APQF values, which is significantly
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better (4.91% better than pLETORg, p-valuex0). As a matter of fact, the best CI value
that pLETORg ever achieves (i.e., 0.805 when (=30, a=0.1, §=1.0, 7=100.0) is still
significantly worse than that of BUTMKL (i.e., 0.812, p-value=3.599¢-33). The results
indicate that the baseline method BMTMKL optimizes the predicted response values
and thus is able to correspondingly reproduce the entire drug ranking structures well.
Different from BMTMKL, pLETORg aims to push only sensitive drugs on top of the
ranking structures and optimize only the ranking structures of those sensitive drugs
(when o > 0). Therefore, pLETORg is not able to well estimate the entire ranking
structures for both sensitive and insensitive drugs. However, in drug selection, the
top ranked drugs could be of great interest compared to those lower-ranked drugs,
and therefore, the low CI performance of pLETORg can be compensated by its high
sCI, APQk and AHQE values.

When 5 percentile of the response values (i.e., §=5) is used as the sensitivity
threshold, pLETORg shows similar behaviors as in 2 percentile case. That is, in
terms AP@5, pLETORg (0.855 when (=10, a=0.5, §=0.1 and y=100.0; 0.857 when
when [=50, a=0.0, f=0.1 and y=100.0) outperforms BMTMKL (0.828) at 3.26% (p-
value=1.864e-18), in terms of AP@10 at 4.40% (0.806 vs 0.772; p-value=7.8775e-33),
in terms of AHQ5 at 8.37% (2.965 vs 2.736; p-value=6.856e-76) and AHQ10 at 5.98%
(3.986 vs 3.761; p-value=7.875e-33) and in terms of sCI at 0.92% (0.658 vs 0.652;
p-value=1.250e-1), but is significantly worse than BMTMKL on CI. In particular, the
AP@5 and AP@10 improvement for =2 is larger than that for =5, respectively (i.e.,
5.81% vs 3.26% at APQ5, 6.61% vs 4.40% at AP@10). This indicates that pLETORg
is good at prioritizing drugs particularly when there are a small number of sensitive
drugs. Note that in Table 4.3, for 6=2 and #=5, the CI values in BMTMKL are identical.
This is because BUTMKL does not use labels in training, and its performance in terms
of CI does not depend on labels. On the contrary, sCI depends on the labels as it
only measures CI within sensitive drugs. Therefore, sCI values of BUTMKL for =2

and #=5 are different. However, pLETORg relies on labels during push and ranking in
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order to learn the models, and thus, labels will affect its performance in both CI and
sCI.

In Table 4.3, the optimal pLETORg results always correspond to non-zero vy values
(i.e., the parameter on cell line similarity regularizer in Problem 4.6). This indicates
that cell line similarities calculated from the gene expression information are able to
help improve the ranking of drug sensitivities in pLETORg. The results in Table 4.3
also show that the optimal performance of pLETORg is from a relatively small latent
space with [=10. This may be due to the fact that the sampling scheme significantly
reduces the size of training instances, and thus small latent vectors are sufficient to

represent the learned information for drug prioritization.

Performance of pLETORg over Push Powers
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Fig. 4.6.: Performance of pLETORg w.r.t. the Push Parameter a

Fig. 4.6 presents the best pLETORg performance on each of the four metrics with
respect to different push parameter a’s when (=10 (i.e., the latent dimension corre-
sponding to the best APQFk values in Table 4.3). Fig. 4.6a and 4.6b show that in
general as « increases (i.e., decreasing emphasis on pushing sensitive drugs on top),
APQFk values decrease. When a=1.0, that is, no push takes effect, the APQk val-
ues become lower than those when a < 1. This demonstrates the effect of the push
mechanism in prioritizing sensitive drugs in pLETORg. The figures also show that the

optimal sCI values are achieved when « € (0, 1), but not at a=1.0 when the ranking
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structure among sensitive drugs is the only focus. This is probably due to that the
ranking difference between sensitive and insensitive drugs involved in the push term
P} can also help improve the ranking among sensitive drugs. In addition, the figures
show that the optimal CI values are achieved when a € (0,1). This is because with
very small o values, sensitive drugs are strongly pushed but it does not necessarily
result in good ranking structures among all sensitive and insensitive drugs. Similarly,
when « is very large, the ranking structures among only sensitive drugs are highly
optimized, which does not necessarily lead to good ranking structures among all drugs
either. Thus, the best overall ranking structures are achieved under a combinatorial

effect of both the push and the sensitive drug ranking.

Performance of pLETORg over Latent Dimensions
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Fig. 4.7.: Performance of pLETORg w.r.t. the Latent Dimension [

Fig. 4.7 presents the best pLETORg performance on each of the four metrics with
respect to different latent dimension [. Fig. 4.7a and 4.7b show that in general, small
latent dimensions (e.g., [ in 10 to 15) are sufficient in order to achieve good results
on drug ranking. We interpret each dimension in the drug latent vectors and cell line
latent vectors as to represent a certain latent feature that together determine drug
rankings in each cell line. Thus, the small latent dimensions indicate that the learned
latent vectors are able to capture latent features that are specific to drugs and cell

lines.
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On the other hand, as APQF tends to decrease as [ increases, sCI tends to increase.
This indicates that larger [ may enable better rankings among sensitive drugs, but
not necessarily pushing sensitive drugs on top. Fig. 4.7 also shows that CI first
increases and then decreases as | becomes larger, following an opposite trend of sCI.
This demonstrates that good ranking structures among all the drugs do not directly
indicate good ranking structures among sensitive drugs, and vice versa. We also
notice that with a=0.5, pLETORg has better APQFk as [ increases from 30 to 50. This
is probably because sufficiently large latent dimensions could also capture the drug
sensitivity information when the sensitivity threshold is relaxed (i.e., more drugs are
considered as sensitive when =5 than those when §=2). Even though, pLETORg still
performs better at [=10 than at [=50 with #=5. Considering computational costs,

we do not explore other even larger latent dimensions.
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4.5.2 Ranking New and Known Drugs

We evaluate the performance of pLETORg on ranking both new drugs (i.e., testing
drugs) and known drugs (i.e., training drugs) together in the experimental setting
as in Fig. 4.3. This corresponds to the use scenario in which new drugs need to
be compared with known drugs so as to select the most promising drugs among all
available (i.e., both new and known) drugs. In this case, we focus on evaluating

whether most of the true sensitive drugs can be prioritized.

Evaluation Metrics

The evaluation is based on the following two specific metrics. The first metric,
denoted as AT@Fk, measures among the top-k£ most sensitive drugs of each cell line
in the ground truth (including both training and testing drugs), what percentage of

them are ranked still among top k£ in the prediction, that is,

Atak({datc. /)= Y H(d7€t]:p_k(c)), (4.13)

dj etop-k(C)

where d- is the drug that is ranked at position j by f, and top-k(C) is the set of
top-k most sensitive drugs in cell line C.

The second metric, denoted as NT@k, measures among the new drugs that should
be among the top-k£ most sensitive drugs of each cell line in the ground truth, what

percentage of them are ranked actually among top k in the prediction, that is,

> Iy € top-k(©))

dj is new

S I(d; € top-k(C))

d]— is new

NTQk({d:},C, f) =

(4.14)

www.manaraa.com



153

Overall Comparison

Table 4.4 presents top performance of BMTMKL and pLETORg in terms of ATQk
and NT@QEk. We did not present APQk and AHQFk values here as they show similar
trends as in Table 4.3. In addition, as the top ranking structures on known drugs
(i.e., the majority of all drugs) have been explicitly optimized during training, APQFk
and AHQFk could be highly dominated by known drugs (i.e., training drugs).

The results in Table 4.4 show that in terms of NT@QFk, pLETORg is able to achieve
very similar results (when [=5) as BMTMKL, in which cases, pLETORg even achieves
slightly better results on AT@k than BMTMKL. This demonstrates that pLETORg has
similar power as BMTMKL in ranking new and known sensitive drugs together, and
even slightly better power in prioritizing new sensitive drugs. In terms of ATQE,
pLETORg is able to achieve much better results (when (=50) than BMTMKL. However,
when pLETORg achieves high ATQFk, the corresponding NT@QFk is not optimal. Since
the top-k most sensitive drugs among both new and known drugs will be dominated
by known drugs, the good performance of pLETORg on AT@QF validates that the push

mechanism in pLETORg takes place during training.

4.5.3 Ranking Drugs in New Cell Lines

In this section, we present the experimental results on ranking drugs in new cell

lines. The experiments follow the experimental setting as in Fig. 4.4.

Analysis on Cell Line Similarities

New cell lines don’t have any drug response information or latent vectors, and
the only information that can be leveraged in order to select drugs for them is their
own genomics information. Therefore, we first validate whether we can use the gene

expression information for drug selection in new cell lines in pLETORg.
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We first calculate the similarities of cell lines using their latent vectors learned
from pLETORg (in the setting of Fig. 4.3) in rbf function. The correlation between
such similarities and the cell line similarities calculated from gene expressions (i.e.,
wy, as in Equation 4.8) using rbf function is 0.426. The correlations show that cell

line gene expression similarities and their latent vector similarities are moderately

correlated.
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Fig. 4.8.: Cell Line Similarity Comparison

We further analyze the cell lines whose gene expression similarities (using rbf func-
tion) are among 90 percentile. For each of such cell lines, we identify 10 most similar
cell lines in their gene expressions. Fig. 4.8 shows the gene expression similarities of
all such cell lines and their latent vector similarities. Fig. 4.8 demonstrates that for
those cell lines whose gene expression similarities are high, their latent vector simi-
larities are also significantly higher than average (the average cell line latent vector
similarity is 0.682).

This indicates the feasibility of using high gene expression similarities to connect

new cell lines with cell lines used in pLETORg
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Experimental Setting

Based on the analysis on cell line similarities, we split testing cell lines (i.e., new
cell lines) from training cell lines (as in Fig. 4.4) such that each of the testing cell lines
has sufficient number of similar training cell lines in terms of their gene expressions.
Cell line latent vectors are learned in pLETORg only for those training cell lines, and
drug latent vectors are learned for all the drugs. Note that the label scheme in this
setting follows that in Section 4.4.1. The detailed protocol is available in Section S1
in supplementary materials.

In order to select sensitive drugs for each of the testing/new cell lines, we first
generate a latent vector for the testing cell line as the weighted sum of latent vectors
of its top-10 most similar (in gene expressions) training cell lines. The weights are
the respective gene expression similarities. The drugs are then scored using the latent

vector of the new cell line and latent vectors of all drugs.

Overall Comparison
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Fig. 4.9.: Performance on Selecting Drugs for New Cell Lines

Fig. 4.9a and Fig. 4.9b present the performance of BMTMKL and pLETORg with
respect to different numbers of new cell lines (Ve in Fig. 4.9) in terms of APQ5,

AP@10, respectively. We don’t present the performance in sCI and CI here because in
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drug selection for new cell lines/patients, CI is not practically as indicative as APQFE,
particularly in drug selection from a large collection of drugs. For each of the two
evaluation metrics, we compare the performance of BATMKL and pLETORg when 6=2
and 0=5. Note that as Ve, increases (i.e., more new cell lines), the average gene
expression similarities between new cell lines and training cell lines decrease according
to the data split protocol.

Fig. 4.9a shows that as N, increases, the APQ5 values of both BMTMKL and
pLETORg with both 0=2 and 6=5 decrease. This is because as more cell lines are
split into testing set, on average, training cell lines and testing cell lines are less
similar, and thus it is less accurate to construct cell line latent vectors for the new
cell lines from training cell lines. Even though, pLETORg consistently outperforms
BMTMKL over all Ny, values. Specifically, when 50 cell lines are held out for testing
(i.e., Npew=H0), pLETORg achieves APQ5 = 0.876/0.965 when 6 = 2/5, compared
to AP@5 = 0.855/0.951 of BMTMKL. When 400 cell lines are held out for testing,
pLETORg achieves AP@5 = 0.853/0.947, compared to AP@Q5 = 0.829/0.938 of BMTMKL.
Particularly, with §=2, pLETORg outperforms BMTMKL at 2.5% when N,.,=50, and
at 2.9% when N,.,—400. This indicates that when the drug selection for new cell
line is more difficult (e.g., fewer training cell lines, fewer sensitive drugs), pLETORg
outperforms BMTMKL more.

In terms of AP@10 as shown in Fig. 4.9b, both pLETORg and BMTMKL show similar
performance when #=5. When =2, pLETORg shows similar performance on APQ10
as BMTMKL when a small number of cell lines are held out (Npew < 250). When more
cell lines are held out (Npeyw > 250), pLETORg outperforms BMTMKL. For example,
when Npew=250, pLETORg achieves AP@10 = 0.798, compared to APQ10 = 0.774
of BMTMKL. This also indicates that pLETORg outperforms pLETORg on more difficult

drug selection problems.
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4.5.4 Analysis on Latent Vectors
Analysis on Drug Latent Vectors

Evaluation Measurements We evaluate how much the learned drug latent vectors

could be interpreted in differentiating sensitive drugs and insensitive drugs. To have

quantitative measurements for such an evaluation, we calculate the following four

types of measurements:

1. the cosine similarities of drugs using their latent vectors learned from pLETORg,
denoted as cosy;

2. the Tanimoto coefficients [43] of drugs using their AF features 11, denoted as
Tanar;

3. the average ranking percentile difference for all the drug pairs over all the cell lines
in the ground truth, denoted as Ar%; and

4. the average difference of responsive cell line ratios for drug pairs over all the cell
lines in the ground truth, denoted as Ae%.

AF features are binary fingerprints that represent whether a certain substructure is

present or not in a drug. Thus, the Tanimoto coefficients over AF features measure

how drugs are similar in terms of their intrinsic structures (Tanimoto coefficient has

been demonstrated to be effective in comparing drug structures [44]). The measure-

ment Ar% is calculated on all pairs of drugs over the cell lines that both of the drugs

in a pair have sensitivity measurement (i.e., no missing values on either of the drugs)

in the cell lines. The absolute values of the percentile ranking differences over such

cell lines are then averaged into Ar%. The measurement Ae% is calculated as the

percentage of cell lines in which a drug is sensitive (with §=5). The absolute values

of such ratio differences from all the drug pairs are then averaged into Ae%.

Discriminant Power of Drug Latent Vectors We group all the drug pairs based

on their cos;, and Tanap percentile values. Fig. 4.10 presents the Ar% for different

Yhttp://glaros.dtc.umn.edu/gkhome/afgen/overview
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Fig. 4.10.: Ar% in Different Drug Pairs

groups of drug pairs. In Fig. 4.10, the colors code the Ar% values. The two values
in each drug group (e.g., x/y in each cell in the figure) are the average percentile
ranking of the higher-ranked drugs (i.e., z) and of the lower-ranked drugs (i.e., y)
in the drug pairs, respectively. The difference of the two values in each drug group
is the corresponding Ar%. Fig. 4.10 shows that when the drugs are less similar in
their latent vectors (i.e., smaller cosy, percentile; the left columns in Fig. 4.10), the
drugs are ranked more differently among cell lines on average (i.e., larger Ar% values).
When the drugs are more similar in their latent vectors (i.e., larger cosy, percentile;
the right columns in Fig. 4.10), the rank difference is less significant (i.e., smaller
Ar% values). This indicates that the drug latent vectors learned from pLETORg are

able to encode information that differentiates drug rankings in cell lines.
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Fig. 4.11.: Ae% in Different Drug Pairs

Fig. 4.11 presents the Ae% for different groups of drug pairs. In Fig. 4.11, the

colors code the Ae% values. The two values in each drug group (e.g., z/y) are
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the average responsive cell line ratio of the higher-ranked drugs (i.e., ) and of the
lower-ranked drugs (i.e., y) in the drug pairs, respectively. The difference of the two
values in each drug group is the corresponding Ae%. Fig. 4.11 shows that drugs that
are very different from others in cosy, (i.e., smaller cosy, percentile; the left columns
in Fig. 4.11) are sensitive in more cell lines (i.e., larger = in x/y values of the left
columns). Specifically, the higher-ranked drugs (i.e., corresponding to x in x/y values
in Fig. 4.11) in the 4 ranges of cosy, values (in increasing order) are sensitive in 28.8%,
4.7%, 1.3% and 0.4% of the cell lines on average, respectively. This also corresponds
to what Fig. 4.10 shows, that is, drugs that are more different from others in cosy,
tend to be ranked higher than the drugs that are more similar to others in cosy,.
Specifically, in Fig. 4.10, the higher-ranked drugs (i.e., corresponding to z in z/y
values in Fig. 4.10) in the 4 ranges of cosy, values (in increasing order) are ranked at
82.2, 61.9, 54.7 and 47.6 percentile on average, respectively. These indicate that the
sensitive drugs are better differentiated in drug latent vectors, and thus pLETORg is

effective in deriving drug latent vectors that are specific to drug sensitivities.

Py PN
Ty T
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Heg N Ny 0 TN
S YN
S T\\“\"‘:\/’/ \\“‘*N/ \\N&l \\N/’ . \\|i S ' N T/ I/
’“\ \ {:;/‘ ) J » (‘) 0 \‘:{:/ ~ /,_,.0
o | |
(a) BRD-K699324631 (b) BRD-K67566344**

ﬁhttps://pubchem.ncbi.nlm.nih.gov/compound/25262965
**https://pubchem.ncbi.nlm.nih.gov /compound /16736978

Fig. 4.12.: Drug structures: BRD-K69932463 vs BRD-K67566344
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Drug Latent Vectors as New Drug Features Both Fig. 4.10 and Fig. 4.11
show that higher/lower Tanimoto coefficients, and thus, higher/lower similarities in
drug structures, do not necessarily indicate similar/different drug rankings or sen-
sitivities (i.e., no row-block patterns in Fig. 4.10 or Fig. 4.11). For example, drug
BRD-K69932463 (Fig. 4.12a) and drug BRD-K67566344 (Fig. 4.12b) are very simi-
lar in their intrinsic structures (i.e., Tanap of these two drugs is above 99 percentile
among all drug pairs), and they do share similar sensitivities in several cell lines, for
example, in cell line HS888T (organ: bone, disease: osteosarcoma) and HS940T (or-
gan: skin, disease: malignant melanoma), both of the drugs are sensitive. However,
on many other cell lines, their sensitivity profiles are very different. For example,
BRD-K69932463 is sensitive in cell line NCIH226 (organ: lung, disease: squamous
cell carcinoma), HCC1500 (organ: breast, disease: ductal carcinoma) and OV56 (or-
gan: ovary, disease: carcinoma), in which BRD-K67566344 is insensitive. Among 791
cell lines that have response values on both BRD-K69932463 and BRD-K67566344,
the two drugs have different sensitivity labels on 456 cell lines. Please note that the
above observation does not contradict to the well accepted conclusion that similar
drugs (in terms of their intrinsic structures) have similar effectiveness (measured in-
dependently of any other drugs; e.g., in ICs), as drugs of similar effectiveness in
different cell lines may be ranked differently.

The difference among drugs of high intrinsic structure similarities is well captured
by the drug latent vectors: cos, between the latent vectors of drug BRD-K69932463
and drug BRD-K67566344 is below 17 percentile among all drug pairs. This indicates
that drug intrinsic structures are not discriminating enough in accurately predicting
drug rankings in cell lines, whereas drug latent vectors derived from drug prioritization
tasks are more informative in better differentiating drug sensitivities in cell lines. In
fact, BRD-K69932463 (with active compound AZD8055) is used to treat diseases
such as gliomas and liver cancer. BRD-K67566344 is only know to be an inhibitor
of MTOR kinase, and may have some potential to treat diseases such as cancers.

As a matter of fact, Ar% is strongly negatively correlated to cosy, with a correlation
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coefficient —0.558, that is, on average, if two drugs are ranked very differently, their
latent vectors are more different. However, the correlation between Ar% and Tanur is
nearly 0 (correlation coefficient —0.056). This indicates the advance of using ranking-
specific drug latent vectors that are derived from drug ranking tasks as new drug
features, compared to the ranking-independent drug structures, in predicting drug

rankings and sensitivities.

Analysis on Drug Latent Vectors
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Fig. 4.13.: Correlation among Different Cell Line Similarities

Fig. 4.13 presents the correlations among three different types of cell line similari-
ties within each of the tumor types. The three cell line similarities are calculated from
gene expressions (GE) using rbf function, cell line latent vectors (LV) using rbf func-
tion and drug sensitivity profiles (DS) using Spearman rank correlation coefficient.
The three corresponding correlations are denoted as corr(GE, LV), corr(GE, DS) and
corr(LV, DS), respectively. The numbers associated with tumor types in Fig. 4.13
indicate the number of cell lines of corresponding tumor types. (e.g., melanoma (51)

indicates that there are 51 cell lines of melanoma). Among the 37 tumor types as
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originally categorized in CCLE, 28 tumor types (i.e., 75.7% of all tumor types) have
their corr(LV, DS) higher than or same as corr(GE, DS), and the average percentage
difference is 59.9%. For example, for 15 neuroblastoma cell lines, corr(LV, DS) is on
average 191.7% higher than corr(GE, DS). For all the cell lines of various lymphoma,
corr(LV, DS) is on average at least 20% higher than corr(GE, DS). This indicates that
even when the correlation between gene expression and drug sensitivity is not strong,
through learning cell line latent vectors, pLETORg can discover novel cell line features
(i.e., cell line latent vectors) that better characterize their drug response patterns.
As a matter of fact, the improvement of corr(LV, DS) over corr(GE, DS) is more
significant when corr(GE, DS) is lower (i.e., the left side of the panel in Fig. 4.13).
This indicates the effectiveness of pLETORg in learning for difficult cell lines. For the
cell lines whose corr(GE, DS) is large (i.e., the right side of the panel in Fig. 4.13),
corr(LV, DS) is still high in general and meanwhile corr(GE, LV) is also high. This
indicates that the cell line latent vectors could retain the signals from gene expressions
if gene expressions exhibit strong signals related to their drug response. For a few
tumor types with relatively low corr(GE, LV) (e.g., liver, aml and esophagus), their
corr(LV, DS) is actually relatively high. This may indicate the capability of pLETORg
in learning new signals for cell lines by leveraging information from multiple other

cell lines.

4.6 Discussions and Conclusions

We developed genomics-regularized joint push and learning-to-rank method pLETORg
to tackle cancer drug selection for three particular application scenarios: 1). select
sensitive drugs from new drugs for each known cell line; 2). select sensitive drugs
from all available drugs including new and known drugs for each known cell line; and
3). select sensitive drugs from all available drugs for new cell lines. Our new method
pLETORg outperforms or achieve similar performance compared to the state-of-the-art

method BMTMKL.

www.manaraa.com



163

In pLETORg, each drug has a global latent vector which is the same in all the
cell lines. This might be restrictive as the learned drug latent vectors may have to
compromise their performance in some cell lines in order to achieve better performance
in other cell lines, and thus better overall performance. We will explore personalized
drug latent vectors in the future research, that is, each drug will have different latent
vectors with respect to different cell lines. In this way, the ranking performance on
each cell line is expected to be further improved.

We will also evaluate our pLETORg method on other drug-cell line screening data,
for example, NCI60 *** and LINCS-L1000 T data. When the number of drugs (chem-
ical compounds in LINCS-1.1000) is large, it becomes more challenging computation-
ally when pairs of drugs are used in learning. We will explore fast learning algorithms

to learn drug latent vectors in the future research.
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5. SUMMARY

In this thesis, I have addressed three important problems in drug prioritization. Three
novel machine learning solutions are also provided to tackle each of the problems.
These solutions have achieved significant improvements over the baseline methods in
the experiments.

The first emerging problem is that, in compound prioritization, existing compu-
tational tools are typically focusing on devising more advanced ranking algorithms,
but the compound ranking performance is largely limited by the scarcity of available
data. The solution MACPAU has been developed to improve the ranking performance
through incorporating external information. Following this idea, I have devised a
suite of assistance bioassay selection methods and assistance compounds selection
methods, along with an assistance compound interpolation method to incorporate
the selected assistance compounds. Our experimental results demonstrate an 8.34%
improvement on compound ranking performance over the state-of-the-art.

The second problem states that existing methods in compound prioritization typi-
cally focus on ranking compounds based on a single property, and multiple compound
properties are not considered simultaneously. The corresponding solution, dCPPP, has
been developed to address the compound prioritization problem based on multiple
compound properties. In this solution, both activity and selectivity prioritization
problems are tackled within one differential method that incorporates information
from multiple bioassays. The dCPPP method learns compound prioritization models
that rank active compounds well, and meanwhile, preferably rank selective compounds
higher via a bi-directional push strategy. Our experiments show that dCPPP is able to
improve the ranking performance of selective compounds by 47.00% over the baseline

and maintain a good ranking among active compounds.
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The third problem is that existing cancer drug selection methods are unable to
effectively prioritize sensitive drugs over insensitive drugs, and are unable to differenti-
ate the orderings among sensitive drugs. To tackle the cancer drug selection problem,
I have developed a new learning-to-rank method, pLETORg, that predicts the drug
ranking structures in each cell line via drug latent vectors and cell line latent vectors.
The pLETORg method explicitly enforces that, in each cell line, the sensitive drugs
are pushed higher than insensitive drugs, and meanwhile, the ranking orders among
sensitive drugs are correct. During the training, genomics information on cell lines is
leveraged to learn the cell line latent vectors. Our experiments demonstrate that the
pLETORg method is able to improve the rankings of sensitive drugs by at least 5.81%
over the state-of-the-art method in prioritizing new sensitive drugs.

In summary, three learning-to-rank solutions have been developed to tackle the
emerging problems in drug prioritization, from compound prioritization in early stages
of drug discovery, to cancer drug selection in precision medicine. In these solutions,
information from heterogeneous datasets are incorporated and leveraged to achieve
better ranking performance. These solutions have shown significant improvement over
baseline methods and have great potential of being applied in many real applications,
such as lead optimization, secondary screening, drug selection, toxicity prediction,

etc.
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